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Abstract We can significantly reduce the cost of program testing by automating the process of
test data generation. Test data generation usually concerns identifying input values on which a
selected path is executed. Although lots of research has been done so far, there still remains a lot
of issues to be addressed. One of the issues is the shape problem. The shape problem refers to the
problem of figuring out a shape of the input data structure required to cause the traversal of a given
path. In this paper, we introduce a new method for the shape problem. The method converts the
selected path into static single assignment (SSA) form without pointer dereferences. This allows us
to consider each statement in the selected path as a constraint involving equality or inequality. We
solve the constraints to get a solution which will be represented in terms of the points-to relations
for each input variable. Simple, but illustrative examples are given to explain the proposed method.

Key words : Program Testing, Automated Program Test Data Generation. Shape Analysis
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the selected path in the absence of pointers.

Up to our knowledge, the work performed by
Korel is unique in dealing with the shape problem
[7]. This method requires actual execution of a
program so that the program flow can be
monitored to determine whether the intended path
was taken. Because the exact locations that pointer
variables point to known during program execution,
it is possible to identify a shape of the input data
structure required to traverse a given path.
However, many iterations may be required if the
program execution flows in the wrong direction
before a suitable input (pointer) value is found.

This paper introduces a new method to help
identify automatically test data on which a selected
path in the program is executed in the presence of
pointers. The proposed method statically analyzes
the selected path. If the analysis is completed
successfully, then we yield:

* a shape of the input data structure and

*a set of constraints describing how to assign
values for input variables which are not of
pointer type in order to cause the traversal of the
selected path.

A shape of the input data structure is described
in terms of points-to relations (i.e. what pointer
variables are pointing to) [12] of each input pointer
variable. The key point of the proposed method is
to introduce a new points-to relation whenever
necessary. For example, suppose the situation
where we encounter a statement “x=*y” for an
input pointer variable y. If y does not point to any
storage location up to that point, it would be
necessary to create a storage location pointed to by
y in order to execute that statement without any
violation. This can be viewed as a search process
of figuring out a shape of the input data structure.

The proposed method also generates a constraint
system from the selected path. To the end, each
Static

Assignment(SSA) form [13] involving no pointer

statement is  converted into Single
dereferences. One important feature of SSA form is
that each variable has at most one definition
(meaning that it is assigned at most once). This
us to deal

feature allows with each program

variable as a logical variable [3].

The main contribution of this paper is a static
approach to automatic program testing for pro-
grams in the presence of pointers. The approach
does not require any means for controlling exe-
cution of the target program unlike dynamic

require the actual execution of
[24,7,10]. In

formulate the test data

approaches which

the  program general, dynamic

approaches generation
problem as a function minimization problem by
treating each branch predicate on the given path as
a function that becomes minimal when the desired
outcome is produced. This implies that they should
be equipped with certain mechanism which can
monitor the program’s execution and force
execution toward the desired direction. According to
the types of the programming languages used,
different control mechanisms need to be developed.

Another aspect of our approach is separation of
test data generation for non-pointer types and the
shape analysis problem. Such separation of concern
enables us to take advantages of current test data
generation techniques for non-pointer variables
which have been well studied relatively. Since, in
particular, the proposed method produces a set of
constraints for non-pointer types in terms of equ-
alities or inequalities between variables, conven-
tional constraint solving techniques can be em-
ployed, leading to the reduction of the needed
development effort.

The rest of the paper is organized as follows. In
Section 2, we will explain in detail SSA form,
basic terminologies, and definitions which will be
used in the subsequent sections. In Section 3, we
define transfer functions associated with various
types of statements dealing with statically allocated
memory objects and the dereference operator ‘.
We also illustrate our method through an example.
In Section 4, we extend our method to heap
directed pointers which point to objects dynamically
allocated in the heap. Finally, conclusion and future

work will be given.

2. Preliminaries

One straightforward way to test data generation
is to extract a number of constraints (equalities or

inequalities) from a path under consideration and
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solve the constraint system. This can be done by
transforming the path into SSA form.

A key property of SSA form is that each
variable has a unique static definition point [13]. In
order to ensure this property, variable renaming is
usually done as follows:

s every assignment to a variable v generates a
new SSA variable vi where i is a unique number,
»just after the assignment to v, vi becomes the
current name (the last version or the current
instance) of v, and

- every subsequent use of v is replaced by its
current name Vvj.

We assume that the subscript number of each
SSA variable starts with 0. For example, the
sequence of code “x=10;x=x+3;” is converted into
SSA form as follows: “x1=10; x2=x1+3”. In this
example, we have two SSA variables x1 and x2
which can be treated as logical variables rather
than program variables. Consequently, we can
regard the statements as the constraints. That is to
say, the first statement can be treated as the
equality to assert that x; is equal to 10.
Analogously, we can treat the second statement as
the equality to assert that the value of x2 is equal
to the result of adding 3 to the value of x.

However, the presence of pointers complicates
conversion of the selected path into SSA form
because aliases can occur (i.e., two or more names
exist for the same memory location) and a variable
can be defined indirectly via a pointer dereference.
This makes it necessary to exploit points—to
information at each program point in the selected
path during conversion to SSA form [14].

At each program point, we collect the points—to
information and then replace each pointer dere—
ference with its points—to result. For example, the
sequence of assignments given by “x=&a;*x=
10;y=a" can be converted to the SSA form without
the pointer dereference “xi=&apa=10y1=arr by
using the points-to information that x points to a
after executing the first assignment.

However, since the variable a does not appear
textually on the left-hand sides of the assignments,
the naive conversion to SSA form would lead to

the incorrect inference that the reference of a of
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the last assignment is a use of ao. In fact, it is a
use of a; because it is defined at the second
assignment indirectly. Thus, it is necessary to have
information about what pointer variables are
pointing to in order to convert the selected path
into SSA form correctly.

We represent points-to relations for each
program point with 0 mapping variables to memory
locations:

0 &€ State= Var — Loc

Var is the (finite) set of variables occurring in
the SSA form of the program path of interest. Loc
is a set of locations (addresses) partially ordered as

depicted in Fig. 1.

Fig. 1 The structure of locations

Then, o(x) will now either be
« T meaning that x may possibly point to any

location (x can be NULL),

» | meaning that x is not a pointer variable or its
points-to relation is undefined,

* NOT-NULL meaning that x points .to certain
memory location, but its exact address is not yet
known,

» /i meaning that x points to a memory location
whose address is [, or
+« NULL meaning that x is not currently pointing
to any location at all.

States are assumed to be ordered as follows:

0;=0; if for all x, 6i(x)E=0;(x)

We also introduce Lo such that for all 0EState,
Lo=0o. We will use Lo to denote that a selected
path is infeasible (i.e, we can not find input values
on which the selected path is executed).

When we refer to a location, it is often con-
venient to use a symbolic name instead of its

address. In this paper, we assume that the targets
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of pointers always possess a (symbolic) name.
Under this assumption, the fact that variable x
points to a location named y can be represented by
o(x)=y without any confusion.

However, this assumption does not hold for the
variables that are not in the scope of a function
but might be accessible through indirect reference.

with the

»

For example, consider function “fun
formal parameter x of type int*x:
fun(int** x) { .. }

The problem lies in the fact that the function
“fun” can refer to memory locations through “*x’ or
‘##x" which are not in the scope of “fun”. In order
to capture points-to information accurately, we need
to name such locations. To the end, we make use
of the concept of Invisible Variables [12]. Invisible
variables are names used for the variables that are
not in the scope of a function but accessible
through indirect reference. For example, the
invisible variable x with type int*x are 1_x with
type int* and 2_x with type int, respectively.

We also define the total function lasts which
gives a last version of a variable with respect to 0.
For example, suppose that 0 is the state after
executing the sequence of the assignments “x=10;
y=x+1; x=y”. Then, last«(x) will give xz lasts can
also accept the SSA variable as input instead of
the original variable. Thus, lasts(x), lasts(x;), and
laste(xn) (n=2) will get the same result x2 On the
other hand, let 0 be the state immediately after
executing the first assignment. Then, lasts(x) will
give x; because we assume that the SSA number
starts with 0 and x is defined at the first
statement.

The pointer variables are partitioned into disjoint
collections. A collection is a set of pointer variables
which should point to the same memory location.
On the contrary, two pointer variables belonging to
distinct collections can not designate the same
location. We assume that each pointer variable
initially belongs to a distinct collection. We also
assume that pointer variables point to different
memory locations unless it can be shown that they
must point to the same memory location.

We shall provide a function [-]o which takes a
variable as input and offers a collection which the

last version of the variable with respect to ©
belongs to. It is immediate that the following
properties hold:

P1 o(laste(x))=0(y) if y&ixlo

P2 lasto(y)<E[x]s if and only if lastd(x)Elyle

P3 [xle={lasts(x)} if o(lasts(x))=NULL

The property Pl states that all pointer variables
belonging to the same collection should have the
same value. For example, if X points to a certain
memory location and y belongs to the same
collection as x belongs to, then y also should point
to the same memory location as x is pointing to.
which

xy refer to the same

This leads to an alias pair (*x, #*y)
represents that *x and
memory location.

The implication of the property P2 is straight-
forward. For all pointer variables belonging to the
same collection, the collections provided by the
function [-]o should be identical. Finally, P3 states
that if the pointer variable X points to no memory
location at all, then the collection which x belongs
to is a just singleton collection consisting of only

the pointer variable x itself.

3. Shape Analysis for Program Testing

This section defines the transfer functions for
boolean expressions and assignments used in the
shape analysis. We then illustrate how the shape
analysis algorithm works to give the solution which
embodies as much information as possible about
the shapes of the input data structure that can
cause the traversal of the given path. In the rest of
this section, we assume that a variable name
means the last (SSA) version of the variable when
there is no ambiguity.

3.1 Transfer functions for boolean expressions

Fig. 2. shows the transfer functions for boolean
expressions involving pointers. For a given boolean
expression and a given state, the main idea here is
to derive the largest solution (state) from the given
state which will evaluate the target boolean
expression to true.

The first transfer function checks whether the
pointer variable x equals NULL. If x is equal to
NULL on the state 0, then the transfer function

will leave 0 unchanged because 0 evaluates the
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I x==NULL |0 = 6®{k—~NULLIkE[x]s} if o(lasts(x)) TNULL>» L

= Lo otherwise

[}

|| x<>NULL |l o

0O{(k,new-name(x, 0))| |kE[xls} if ollasts(x))= T

0 else if lasts(x))=NOT-NULL or 0(lasts(x))= {

fl

Lo otherwise

W

Ix==Ilg

L, otherwise

1!

"

x==yllo

aO{(k,DIkex]) if ollasts(x)) = L

0O{(k,o(lasts(x)) Nollaste(yN) [k [x]o} if

o(laste(x)) Mo(lasto(y)) = L

1o otherwise

"

i

I x<>yllo = Lo if laste(x)E[y]ls or laste(y)E[x]s

= 0_otherwise

Fig. 2 The operational semantics

transfer functions for boolean

expressions. The operator © is the function overriding operator. The

function fOg is defined on the union of the domains f and g. On

the domain of g it agrees with g, and elsewhere on its domain it

agrees with f. [ denotes the address of a certain location.

boolean expression to true.

An interesting case arises when the value of the
pointer variable x is T, ie., O{aste(x))=T. It
implies that x can possibly point to any memory
location including the situation where x designates
no memory location at all. The present case
requires the state that evaluates x to NULL. This
necessitates to narrow the value of x (le, T) on
the current state ¢ into NULL. Consequently, a
largest state which will evaluate the boolean
expression to true can be derived from the current
state 0 as follows: 0®{lasts(x)>NULL}.

We also have to consider the collection [xJo
because the property (P1) mentioned in the pre-
vious section stipulates that all pointer variables in
the collection should have the same value. This is
why we assign NULL to all the pointer variables
belonging to [xJs.

We are now in a position to illustrate the tran-
sfer function associated with the boolean expression
of the form “x<>NULL”. What is interesting is
when o(laste(x))=T. This

relation such that the pointer variable, say o(lasto

implies the points—to

(x)), should point to a certain memory location, but
its exact address may be unknown at the moment.

Then, we face a problem of how to represent such

a points—to relation.

In order to cope with the problem, we materialize
a concrete location from T. The address of the
materialized location is given NOT-NULL rather
than a specific address. We also need to name the
location. The naming is done by using the function
“new-name(v, 0)” defined as follows:

k+1_last (x) if k_last,(x) € [v]e
new-name(v, o) =
1_last,(v)

otherwise

The function “new-name(v, 0)” is based on the
concept of invisible variables and associates a name
with the location pointed to by lasts(v). It firstly
checks whether a invisible variable is included in
the collection (i.e., [vls) the pointer variable, lasts(v),
belongs to. If there exists a invisible variable of
the form k_lasts(p), then the anonymous location
k+1_lasts(p).
situation where more than one invisible variable

will be named There may be a
exists in [v}e In this case, it does not matter which
one is used to name the anonymous location. If no
invisible variables exist in [vls, then we create an
invisible variable 1_lasts(v) to name the anonymous
location.

Once a name is associated with the newly
created location, we introduce a new points—to

relation by making the pointer variable y point to -
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new-name(y, 0). Note that the address of the
materialized location is regarded as NOT-NULL to
reflect that it can represent any location. This is
very important when there exists another pointer
variable, say y, which points to a concrete location
named m and at some point in the given program
path, m is shown to refer to the materialized
location. That is, (*x, *y) forms an alias pair.
Then, the exact address of the materialized location
is reduced to the address of m. If we assign a
specific address to the materialized location, it
would not possible to detect such an alias pair
because inconsistency occurs, ie., 0(x)[Mo(y)=_Ls.
The next transfer function is associated with the

“

boolean expression of the form “x==/" where [
designates a memory address. As a matter of fact,
it makes no difference from the case for the
boolean expression “x==NULL" except that x points
to a certain location whose address is given [

The transfer function associated with the boolean
expression of the form “x==y” concerns that x and
y can possibly point to the same memory location.
Note that the the transfer function does not ignore
the case where either x or y has the NULL value.
“x<>y”
checks whether or not two pointer variables belong
to the (SSA)

instance of the pointer variable x (or y) belongs to

The boolean expression of the form

same collection. If the current
the same collection as the current instance of the
pointer variable v (or x) is belonging to, then we
can conclude that they (should) refer to the same
memory location and thus the boolean expression
will evaluate to false. Otherwise, the current state
will remain unchanged.

3.2 Transfer functions for assignments

The forms of assignments that we consider in
this paper include “x=y”, “x=xy”, “xx=y”, “x=&y”,
and “x=NULL”. Complex statements can be treated
in terms of the hasic assignments. For example,
the statement “*x=+y” are broken into the basic
assignments as follows: “temp=*y;*x=temp”.

The effect of the assignments that have in
common is to generate new SSA variables since
they define variables directly or indirectly. If the
variable x is defined at an assignment, then the
transfer function associated with the assignment

FUNCTION GP(x,0:State) returns 0
: generate a new SSA variable, Ny for last.(x);
set 0(Nx) to T
set WorkList to {last(x)};
for each k in WorkList do
delete k from WorkList;
for each p pointing to k wrt do ¢
generate a new SSA variable, Ny, for p;
set 0(Ny) to Nk
add p to WorkList;

© X N GD R W

e
=4

endfor
11 endfor

Fig. 3 Function for generating new SSA variables.
We assume that Nt denotes a newly created
SSA variable for the variable lasto(t) For
example, if lasto(t) is ti for i>0, then N

denotes tjs1.

make use of the function “GP(x,0)” which handles
the generation of a new SSA variable for the
variable x with respect to the state 0 and records
the newly created SSA variable as the last version
of x (line 1). Note that the newly created SSA
variable Ny for x is initialized to T (line 2).

The function GP(x,0) also generates new SSA
variables for all pointer variables that point to the
last version of the variable X, ie., lasts(x), on the
state 0 (line 4 through line 11). For example,
consider an assignment which defines the variable
X under the situation that a pointer variable p is
pointing to X. Even though p does not appear
textually on the left-hand side of the assignment,
this case can be viewed as an indirect definition of
p. Thus we need to create a new SSA variable for
the pbinter variable p. This process is repeated
until all pointers that can reach the storage location
named x are taken into account.

Fig. 4. defines the transfer functions for the
assignments. Note that the transfer functions are
formulated in terms of those of the hoolean
expressions. Since the first three transfer functions
can be illustrated similarly, we consider only the
transfer function associated with the assignment of
the form “x=y”.

The first effect of the assignment is to create
new versions of the variables defined at the
assignment directly or indirectly. This can be done
by using the function GP as stated earlier. The
result is a new state 0’ where the transfer function
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|| x==new-name(y,0) || GP(x,0,) if o(lasto(y)=T

= || x==my || GP(x,0) else if 0(lasts(y))=NOT-NULL or luy

Ix=NULL || = [ x=NULL || GP(x,0)
| x=&a |l o = | x==k | GP(x,0)
| x=yllo = | x==y || GP(x,0)
| x=xy |l o =

= g otherwise
loxsyllo =

|l new-name(x,0)==y || GP(x,0x) if 0(lasts(x))=T

= || me==ylIGP(my,0) if 6(lasts(x))=NOT-NULL or lnx

= g otherwise

Fig. 4 The transfer fumctions for assignments. In the transfer functions, 1k}$ denotes

the address of k, m, denotes the location pointed to by last«(p), 0,, is the state
computed by 0,=0®{(k,new-name(p,0)| kE[pls}.

associated with the boolean expression “x==y” is
applied and makes the pointer variable x point to
the same location as y is pointing to. Recall that
(the current instance of) the pointer variable x is
initialized to T before evaluating the equality test
because it is newly created. As a consequence, X
will get the value of vy by taking a meet of the
values of the two pointer variables x and y.

The transfer functions associated with the last
play
determining a shape of

two  assignments an important role in

the input data structure
The

primary effect of these types of assignments is to

required to traverse the path of interest.

introduce new points-to relationships whenever
necessary, then making concrete a shape of input
We

function associated with the assignment of the form

data structure. illustrate only the transfer

“x=+y” because the other can be easily understood.
The the

assignment of the form “x=+*y” attempts to trans-

transfer function associated with
form the assignment into the form without the
pointer dereference operator. This can be done by
using the points—to information for y. The first
clause of the transfer function of the assignment
takes care of the case where o(lasto(y))=T. In this

case, we materialize a location from T whose name

is given by new-name(y,0). Once a name is
associated with the materialized location, we intro—
duce a new points-to relation by making the
Of

course, this change should be made for all pointer

pointer variable y point to new-name(y,0).

variables belonging to the same collection as y is
belonging to. The next step is simply to evaluate
the transfer function associated with the equality
“x==new—name(y,0)".

The second clause of the transfer function takes
case of the case where y points to a concrete
location. In this case, we simply replace the
right-hand side of the assignment with the location
y is pointing to. For example, if y points to a
certain location, say v, then the right-hand side of
the assignment will be replaced by v and then the
transfer function associated with the boolean
expression “x==v” will be evaluated.

The last clause concerns the case where y has
the NULL value. Obviously, dereferencing v at the
assignment causes a violation. Thus, the result will
be L, indicating that the path under consideration
cannot be executed.

3.3 The shape analysis algorithm

Fig. 5 shows the shape analysis algorithm for

identifying the information about the shapes of the



Azstd Z2OY APe AF 99 ATz =g AR 1311

input data structure that can cause the traversal of
the given path <si,.,sn>. The view that we take
in the algorithm is that a program path is a
constraint system describing how input data
structure (or input values) should be formed in
order to traverse the path. The idea is to extract a
number of constraints from the given path by
transforming it into SSA form without pointer
dereferences. For the sub-path <si,., si>(i=n), a
solution to the constraint system will be a state o
after evaluating the sub-path. The state 0; has
information about the shapes of the input data
structure required to traverse the sub-path in terms
of points-to relations for each pointer variable.
Since the constraint system does not necessarily
have a unique solution, the largest solution is
desired.

First of all, we need to construct an initial state
0p. For every variable x, its initial (SSA) version of
the variable, xo, needs to be generated. Concerning
the points—to relation, every SSA variable generated
from input variables, ie., formal parameters or
global variables, is assumed to point to anything.

That is to say, 0(xg)=T if x is an input pointer

FUNCTION get-shape(p:path) returns o

variable. This is reasonable because memory loca-
tions pointed to by input variables should not be
initially restricted. On the other hand, if it is a
local variable or it is not of pointer type, its
points—to relation is initially set to undefined.

Basically, the algorithm composes the transfer
functions associated with the program points in the
given path p=<sy,..,sn>. That is to say, the solution
will be a state 0 given by:

0=0,=f,(00)=fsn © ... © o1 © id(0p)

where “id” is the identity function for the empty
path and fg is the transfer function associated with
statement si. A transfer function associated with
each statement specifies how the statement acts on
the input state and changes the input state to a
new state. Starting with an initial state g, we can
yield the final state ¢ which will be the largest
solution if the constraint system generated from the
given path is consistent. On the other hand, if the
system is inconsistent (i.e., denoted by L), then
we conclude that the path is infeasible. In the case,
we can not find an input data structure that will
cause the path to be executed.

Lines 9 through 12 take care of the points-to

1. for every variable x, generate its initial SSA version Xo of the variable x;

2: construct 0o such that

8o () __{ T if x is an input pointer variable of pointer type
o =

1 otherwise

3 setitols

4: for each si in p do

5: if (si is of the form x<>y) then 0;=6i-;;

6: else 0=|Isilloi-1;

7 if 0i<>_L¢ then

8 transform si into SSA form s without pointer dereferences

o if (5 is of the form x==NULL) then for all k in {xJei-), [kls=(k}
10 if (s is of the form x==/ and Jy:6i(lasts(y))=0) then [xloi=lylei=[xX]i-1U [yloi-1;
11: else if (g is of the form x==y) then [xli=[yla=[xJsi-1U[y]loi-1;

12: else [xJoi=[x]Joi-1 for every variable x;

13: else report that the path is inconsistent and exit;

14: increment i;

15 endfor

16: for each st of the form x<>y do

17: if (lasto(x)El[yls or laste(y)E[x)s) then report that the path is inconsistent and exit;

18: endfor

Fig. 5 Function for computing shape information for the selected path p=<s;,...,50>
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information. It suffices to consider the forms as
follows: “x==NULL”,“x==/", and “x==y”. Note that
even though the assignments can affect the points-
to information, they are eventually transformed into
the above forms after processing line 8.

Line 9 concerns the form “x==NULL”. In this
case, all the pointer variables in the collection [x]si-1
point to no memory location at all. Thus, each
pointer pointer variable k in [xls-1 is separated in
such way that [kls gives {k}. The next form that
affects the points~to information is “x==y”. The
condition at line 10 checks whether there already
exists a pointer variable which point to the memory
location whose address is [. If such a variable, say
y, exists, then it is necessary to merge [x]s-1 and
[Y]OH

“

to reflect the fact that after evaluating
x=={", the pointer variables belonging to [xJs (or
[yls) should point to the memory location whose
address is [ Line 11 concerns the form “x==y”. An
interesting case arises when x and y belong to
disjoint collections, but they are not in conflicts
(ie., Gi(x)Mao(y)= L). Then, we need to merge the
collections to indicate that they should point to the
same memory location from now on. The other
forms does not affect the points-to information.
Note that evaluation of the boolean expression of
the form “x<>y” is deferred until points-to infor-
mation for the path is collected. The reason for the
lazy evaluation is because pointer variables are
assumed to point to distinct locations unless it can
be shown that they point to the same location.
Without having

variables are pointing to, we could not accurately

information about what pointer

determine whether two pointer variables are
pointing to.
The time complexity of the shape analysis

algorithm is determined as follows. It is not
difficult to see that 0i is computed for each s;, that
is, Ipl times where Ipl is the number of the
statements plus the expressions in the given path
p. The time complexity of the function GP in Fig.
3 is proportional to the square of the number of
the variables in the path ‘P, Iv° because the
iteration is traversed |v| in the worst case and in
each iteration, all possible points-to relations have

to be considered, which equals |vl. This entails that
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the worst case time complexity of the shape
analysis algorithm is O(plX|v]?.

The space complexity is proportional to the
points-to information which is computed at each
program point. Since the points-to information is
proportional to the number of variables, the space
complexity of the shape analysis algorithm is
OlIplXivh.

3.4 An example

Fig. 6 shows an example program to illustrate
the proposed method. Suppose that we want to
identify a shape of input data structure required to
traverse the path <1,2,34,6,8,9,10,11>. For the sake
of clarity, we will represent each state by a
pictorial representation called a shape graph. In a
shape graph, square nodes model concrete memory
locations. Edges model pointer values. Suppose that
0(x) gets y. Then, there exists a directed edge
from the square node named X to the square node
named y. But, we do not explicitly show L in
shape graphs. From now on, by 0y we mean an
and by 0 we mean the state

initial ~ state

immediately after processing statement I

void Example(int **x, int **y, int v) {
int *p, *q, *r, 7,

1: D = *X;
2 q = *y;
3 if (p==q) {
45 if (p == NULL) *q = v;
6,7: else if (q == NULL) *p = v;
else {
8 r= &z
9 #r = 10
10,11: if (z == v) *q=v;
}
}
else {
12,13: *p = V; *q = V;

}

Fig. 6 An example program

First of all, we start with an initial state 0y such
that  0o(x0)=00(y0)= T ,00(po)=00{qo)=0o(re)=00(vo)=00(z0)=
1. Recall that initial versions of input variables of
pointer type are initialized to T while local vari-

ables or variables not of pointer type are initialized
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Fig. 7 The shape graphs that arise when the shape analysis algorithm is applied to the given path of
the example program in Fig. 6, (a) depicts the initial state 00,(b) depicts the shape graph after
evaluating the sub-path <1,2>, (c) depicts the shape graph after evaluating the sub-path <1,23>,
and (d) depicts the shape graph after evaluating the sub-path <1,2,34>. As a matter of fact,
evaluation of the given path <1,2,3,4,6,89,10,11> does not affect the shape graph given in (d) any
more. (e) shows the points—to relation arisen after evaluating the assignment 8. The part enclosed
in the dotted line in (f) shows the shape of the input data structure that can cause the traversal

of the target path <1,2,34,6,8.9,10,11>.

to L. We also assume that the pointer variables
are initially partitioned into singleton collections
consisting of only one pointer variable. Fig. 7(a).
depicts the shape graph corresponding to the initial
state 0O,

After evaluating statements 1 and 2, we get the
following points-to information:

* Xo points to 1_xo and

* yo points to 1_yo

That is to say, the effect of assignments 1 and 2
is to introduce new points-to relations by mate—
rializing the locations named 1_xo¢ and 1_yo from T
pointed to by xo and yy respectively. We also
observe that since they define p and q, respectively,
their last versions are changed to m and qi. As a
result we yield the shape graph in Fig. 7(b)

Let us consider the boolean expression ‘‘p==q’’.

Its effect is 1) to leave the current state unchanged

1313
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if the last versions of p and q, say pi and q, point
to the same location, 2) to make p and q: belong
to the same collection if they can possibly point to
the same location, or to indicate that the boolean
condition cannot evaluate to true if pr and qi are in
conflicts.

The present case is applicable to 2). Conse-
quently, the top nodes pointed by pr and qi are
merged, so that it indicates that pr and qi should
point to the same location as shown in Fig. 7(c).

Now, we are in a position to evaluate the
boolean expression “p==NULL”. Since we want the
boolean expression to evaluate to false, we can
consider the form “p<>NULL” instead. It allows us
to exclude the case where both p1 and q; will have
the NULL value. Thus, the top node pointed by
both p1 and qi (of course, also pointed by 1_xo and
1_yo) is changed to the node labelled with
NOT-NULL which we need  to name. The can-
It does
not matter which one is used. Fig. 7(d). shows the

didates include 1_p1, 2_%Xo, 2_yo, and 1_q.

situation where 2_xo is selected as the name of the
NOT-NULL node.

Similarly, we can evaluate the boolean expression
“q<>NULL". Fig. 7(d) shows the current instance
of q, qi, should point to the node named 2_xo. It
means that q cannot be NULL when evaluating the
boolean expression. Thus, nothing will be affected.

Here, it seemns interesting to imagine the situ-
where it is required that the boolean
“q==NULL”
Suppose that we want
<1,2,3,4,6,7>. In order to cause the traversal of the
program point 7, the current instance of q, aqi,
should be NULL. This will cause a contradiction
since the current state as shown in TFig. 7(d)

ation
expression should evaluate to true.

to exercise the path

requires that qi should not be NULL. As a result
we would get L, indicating that an infeasible path
is detected.

Whenever we encounter a statement such as
statement 9 where either of its left-hand side or its
right-hand side involves the pointer dereference, we
convert the statement into SSA form without
pointer dereferences using the points—to information.
Fig. 7(e) shows the points-to information that n

points to zo introduced immediately after evaluation
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of the assignment 8. Consequently, the variable zo
will be defined at the assignment 9. In addition, the
function GP generates new versions of r and z! r2
and z;. As a result, the assignment is converted
into SSA form without pointer dereference: “z;=10".

What happens if neither left-hand side nor
right-hand side of an assignment is of pointer
type? In this case, traditional conversion to SSA
form will be performed by replacing the variables
with their last (SSA)

conversion of the boolean expression “z==v

versions. For example,

" at
statement 10 into SSA form “zi== vy’.

The last statement we need to consider is
“xq=v". Its evaluation is carried out in the same
manner as that of the assignment 9 by using the
points—to information of g. Since q; points to 2_xo,
the assignment is converted into the SSA form
without the pointer dereference: “2_xo= vo’.

We are interested in the portion of the final
shape graph that is associated with initial input
(pointer) variables because it gives a shape of the
input data structure required to traverse the
selected path. By initial input variables we mean
the versions of input variables before any modi-
fication; they have 0 as their subscript number.
The partial shape graph enclosed by dotted lines in
Fig. 7(f). shows the input data structure required to
traverse the selected path.

Once we have found the input data structure
required to traverse the selected path, we need to
find values for input variables of non-pointer types.
We can find such values by solving the constraints
generated from the selected path. Having the
constraints, we can apply various methods [3-6,8-9]
to come up with a solution.

In the example, we have the constraints as
follows:

z1==10

2_X0::Vo

It is not difficult to see that the solution will be:
21110, vo:10, p2:10.

The variable vy is only of concern to us since it
gives the input value of v which suould be sup-
plied from outside. Consequently, we need to form
the input data structure as the part enclosed by the
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dotted line shown Fig. 7(f) and provide 10 for the
value of the formal parameter v.

4. Heap-Based Data Structure

So far, we have focused on pointers pointing to
statically-allocated memory objects (typically sta-
cks). In this section, our approach will be extended
to cope Wwith heap-directed pointers, which point to
objects dynamically allocated in the heap. Heap-
directed pointers often involve structures. A struc-
ture has multiple fields, each of which is accessed
using field identifiers. For the sake of simplicity,
we assume that each field can either be an integer,
a pointer to another location or it can be NULL.

4.1 Transfer functions for structures and heap-

directed pointers

Introducing structures and heap-directed pointers
necessitate to deal with the statements of the form:
« x.f=expression
= k=xf
. x=y
» x.f rel k where rel is one of {>,<,<>==<=>=}1
« p—f=k
e k=q—f
» p=malloc(-)

- free(p)
+p—f rel k

In order to define the transfer functions asso-
ciated with these statements, we firstly present
how to assign SSA numbers to structures. Since
we need to treat every field in a structure as a
separate variable, we associate SSA numbers with
all the fields as well as with the structure itself.
For the SSA numbering,
presented in [14]; assignment to a field(ie., x.f=..)

we adopt the rule
increments the SSA numbers associated with the
field and a structure copy assignment (ie., x=y)
changes the SSA number associated with the
structure as a whole. Fig. 8 shows a program
fragment illustrating how to assign SSA numbers
to structures. Note that only the structure copy
assignment generates a new version of a variable

of structure type.

1) If k is of pointer type. rel will be allowed to be one of {().

==

struct foo { struct foo {
int f; int f;
int g; int g;
} X, } X, v
x.f=10; x0.£1=10;
x.g=20; X0.21=20;
y.f=x.f; vo.fi=xo.f1;
x.f=30; x0.f2=30;
V=X V1=Xo;
x.g=y.f; Xo.g2=y .11

(a) (b)
Fig. 8 A program fragment showing SSA numbers
for structures

The transfer functions associated with the first
four forms make no difference from those asso-
clated with ordinary assignments. The reason is
that the variable of the form x.f can be regarded
as a separate variable. Thus, we will not go into
details. From now on, we will assume that the
function GP 1is changed to cope with structures
accordingly.

Fig. 9 shows the transfer functions for the
statements involving the pointer dereference
operator ‘= and the functions for allocating and
and free().

releasing memory locations: malloc()

The functions involving the pointer dereference
operator are transformed into the forms without
pointer dereferences using the points—to information
as in the case of dealing with the pointer
dereference operator ‘¥,

First of all, it is checked what each pointer
variable is pointing to. If a pointer variable points
to a node labeled with T, then a memory location
is materialized from the top node. In this case, we
need to name the newly created (anonymous)
location. As stated earlier, this can be done by
using the function “new-name”.

For example, suppose that x is a pointer variable
which can point to any structure in the state ¢, ie,
o(laste(x))=T. We also assume that the collection
Then, the

invisible variable 1_last«(x) can be used to stand

[xlo is the singleton set {lasto(x)}.

for the structure materialized from the top node
and the pointer dereference “x—f" is replaced with

the invisiable variable 1_lasts(x).f. This can be
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[ly=x—f| o = || y==new-name(x,0).f || GP(y,0x) if o(lasts(x))=T
= || y==mx.f || GP(y,0) else if 6(laste(x))=NOT-NULL or Inx
= 1, otherwise

I x—t=y o = || new-name(x,0).f==y [| GP(x,0x) if ollasto(x))=T

= || muf==y || GP(my,0) else if 0(laste{x))=NOT-NULL or lnx

L, otherwise

|| p=malloc(-} || o
heap

| free(p) || 0 = ||p=NULL|l o

|| p=&heap_loc || o, where heap_loc refers to a location allocated from

Fig. 9 The transfer functions for the statements involving the pointer dere-

ference operator ‘—’, malloc() and free() functions.

viewd as a process of concretizing a shape of the
data structure; the top node T can be regarded as
the ‘primordial soup’ [15]. Since the other cases of
the transfer functions shown in Fig. 11 are similar
to the transfer functions associated with the state-
ments “y=*x" and “#x=y”, we will not give more
explanation.

Fig. 9 also includes the transfer function for the
statement “p=malloc(~)” which creates a new loca—
tion from heap which will be pointed to by p.
Since the statement creates an anonymous object,
we need to name it. To the end, we use the place
(statement) in the program, prefixed by the word
“heap_”, where an anonymous heap object is
created.

Let us consider the following sequence of code:

1: p=malloc(-);

20 q=p;

3: p=malloc(-);

Then, the sequence of code can be converted int
SSA form as follows: pi=&heap_1; qi=p1; pe=
&heap_3; v

The analysis of the sequence of code comes up
with the desired result that pi and a1 point to the
same heap object named ‘heap_l’, but p: points to
the heap object named ‘heap_3'.

The memory release function “free(p)” returns
the memory location pointed to by p to the heap.
Without loss of semantic information, this is equal
to say that p does not point to anything after
“free(p)”. Thus, we can use the transfer function
“p=NULL” for

associated with the assignment

“free(p)”.

Finally, we need to consider the boolean ex-
pression of the form

p—f rel k

We will not show the transfer functions asso-
ciated with the boolean expression of the above
form because they can be defined in the same
manner as those associated with the assignments
of the form “p—f=k” (or k=p—f). That is to say,
the points-to information about what the pointer
variable p is pointing to will be used to transform
the boolean expression into a boolean expression

involving no the pointer dereference operator —.

struct Node {
int data;
* struct Node *left;
struct Node *right;
%
typedef struct Node *=NodePointer;

void Find{(NodePointer L, int y, NodePointer q) {
NodePointer p;

11 p=L:
2: g = NULL;
3 while (p != NULL) {
4: if (y == p->data) {
5 q=0p
6 p = NULL;
}
else {

78 if (y < p->data) p = p->left;
! else p= p->right;

Fig. 10 An example program
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4.2 Example

Fig. 10 shows an example program that has been
taken from [7]. Suppose that we want to identify
a shape of the input data structure that will
traverse the path <1,2,3,4,7,8,3,4,7,9,3,4,5,6,3>.

Fig. 11(a) shows the partial shape graph showing
the initial state with which the analysis starts. For
the sake of simplicity, we will depict only what
pointer variables are pointing to.

Fig. 11(b) shows the state after evaluating the
sub-path <1,2>. It is observed that the pointer
variable p points to whatever L is pointing to after
evaluating statement 1 and q has the NULL value

Lo Qo Po
L h
T T

after evaluating statement 2 (this is not explicitly
shown in Fig. 11(b)). Note that the subscripts of p
and q have been incremented by one because the
assignments define the variables, respectively.

The next one we need to evaluate is the boolean
expression “p<>NULL”. The result should be a
maximal state that evaluates the expression to true.
Such a state can be obtained by materializing a
concrete location from the top node pointed to by
p1 and Lo. This is equal to say that a structure is
created and it is pointed to by pi1 and also by Lo.
Consequently, we will have a state depicted in Fig.

11(c). Whenever a location is created, we ensure

Lo P Q,
T
(b)

Fig. 11 The shape graphs that arise when the shape analysis algorithm is applied to the given path of the
example program in Fig. 10; (a) depicts the initial state 00, (b) depicts the shape graph after
evaluating the sub-path <1,2>, (c) depicts the shape graph after evaluating the sub-path <1,2,3>,
(d) depicts the shape graph after evaluating the sub-path <1,2,3,4,7,8>, (e) depicts the shape graph
after evaluating the sub-path <1,2,34,7,83,4,7>, and (f) depicts the shape graph after evaluating

the target path <1,2,34,7,8,34,7,9,3,45,6,3>.
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that all pointer fields can possibly point to any
place by initializing them with T. Note that the
newly created location has been labeled with 1_Lo

using the notion of invisible variable.

Evaluation of the boolean expression “y<>p—
data” does not affect the points—to information, but
generates a constraint without the pointer

dereference as follows: “yo<>1_Lo.data”. Similarly,
boolean expression “y<p—data” will be transformed
the “yo<l_Lgdata”. Thus, the
constraints will be reduced to “yo<l_Lo.data”.

into constraint

The next statement we have to consider is “p=p
—left”. First of all, we have to check what the
current instance of the pointer variable p (ie, p1)
is pointing to. Fig. 11(c) shows that p; points to a
location named 1_1o. As a result, we can rewrite
the assignment into the SSA form involving no
pointer “pe=1_Loleft”.
Evaluation of the SSA form will lead to the state
depicted in Fig. 11(d).

The next statement we have to consider is the

dereferences as follows:

boolean expression “p<>NULL”. Evaluation of the
boolean expression ensures that the location pointed
to by the current instance of p, ie.,, pz should not
be NULL. Consequently, the top node pointed to by
p2 needs to be materialized into the node named
2_Lo. The result will be the shape graph depicted
in Fig. 11(e).

We continue to evaluate the boolean expressions
“y<>p—data” and “y>p—data”. We can observe
that the evaluation does not affect the points-to
information, but generates an additional constraint
“yo>2_Lo.data” which should be satisfied by the
data field of the structure pointed to by ps.

Now we are in a position to evaluate the assign-
ment “p=p—right” and then “p<>NULL". The total
effect is to create a (NOT-NULL) node which will
be pointed by ps and 2_Lo.right. All we have to do
at the moment is to evaluate the statements in the
sub-path <4,56>. The boolean expression “y==p—
data” will associate an invisible variable, say 3_Lo
with the NON-NULL node pointed to by ps: and
2_loright and be transformed into the equality as
follows: yo==1_Ladata. Evaluation of the assign-
ments “q=p” and “p=NULL” can be done without
any difficulties. The result is shown in Fig. 11(f).

=
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The input data structure shown in Fig. 11(f)
needs to be materialized because it actually embo-
all that the
traversal of the selected path. The pointer fields of

dies possible shapes will cause
the nodes have the top value, meaning that it does
not matter whatever values they take. In order to
keep an input data structure as simple as possible,
we can assign NULL to the pointer fields. In
addition, the values of each data field of the struc-
tures can be generated by solving the constraints:

yo<l_Lo.data

yo>2_Lo.data

yo==1_lL3.data

Assuming that 10, 20, 8 and 10 have been
chosen for the input variable y and the data fields,
respectively, the following input data structure will

be created:

Fig. 12 A shape of the input data structure

5. Conclusion

Most work in automated test data generation has
focused on finding input values for non-pointer
types. However, handling pointers is crucial to test
data generation for programs written in procedural
languages such as C. In this paper, we have
presented a static approach to determine a shape of
input data structures required to cause the traversal
of a selected path in the presence of pointers.

We can use an approach to program analysis
called

applications

shape analysis that has been studied for

including compiler optimization and

parallelization [15]. Shape analysis allows us to
determine the space of shapes that input data
structures might have for all possible execution

paths. However, we do not directly apply shape
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analysis techniques to test data generation problem
because we are interested in a specific path rather
than in all possible execution paths. Even though
we limit shape analysis to the selected path, overly
conservative information might be produced,
meaning that the analysis result may contain the
shapes of an input data structure that can not
traverse the selected path. This is in part because
unbounded data structures need to be summarized
in some finite way. Note that we only need to find
a shape of an input data structure that can
traverse the selected path. Since a program path is
assumed to be finite, we do not also have to
consider the problem that the summarization of
unbounded data structures gives rise to.

For our purpose, we have defined the transfer
functions associated with various forms of boolean
expressions and assignments. Basically, the transfer
functions collect points-to information for each

program point and introduce new points-to
information whenever necessary. In addition, each
into SSA form without

pointer dereferences, so that each statement can be

statement is converted

treated as constraints involving (in)equalities. Thus,
we can make use of current constraint solving
techniques to solve the constraint system to get a

solution for non-pointer variables.
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