DOI QR코드

DOI QR Code

Application of an Unsteady River Water Quality Model for the Analysis of Reservoir Flushing Effect on Downstream Water Quality

저수지 플러싱 방류 효과분석을 위한 비정상상태 하천수질모형의 적용

  • Published : 2004.10.01

Abstract

Since the self-purification capacity of rivers in Korea is significantly controlled by environmental maintenance flow supplied by upstream reservoirs during drought season, it is obviously important to operate the river and reservoir systems considering not only water quantity aspect but also conservation of downstream water quality and ecosystem. In this study, an unsteady river water quality model KORIVl- WIN was developed as a tool for evaluating the impact. of reservoir operations on the downstream water quality. The model parameters were calibrated and verified using field data obtained in Geum River on September and October of 2002, respectively. Intensive data sampling was performed on November 22, 2003 to investigate the effect of a short-term flushing discharge of Daecheong Reservoir, which increased outflow from 30 $m^3$/s to 200 $m^3$/s for 6 hours, on downstream water quality. The model performance was evaluated by comparing simulated results with observed data including hydraulics, biochemical oxygen demand(BOD$_{5}$), nitrogen and phosphorus species during the flushing event. It showed very good performance in predicting the travel time of flushing flow and water quality variations of dissolved forms of nitrogen and phosphorus species, while revealed large deviations for BOD$_{5}$ possibly due to missing the effect of organic matters resuspension from river bottom sediment during the wave front passage.

갈수기 동안 우리나라 하천의 자정능력은 상류 댐으로부터 공급되는 하천유지유량에 큰 영향을 받으므로, 하천과 저수지시스템의 운영은 수량공급측면뿐만 아니라 하천의 수질과 생태계를 동시에 고려해야 한다. 본 연구에서는 수질사고와 악화에 취약한 갈수기 동안 다양한 댐 방류 대안이 하류 수질에 미치는 영향을 평가하기 위한 비정상상태 하천수질모형인 KORIV1-WIN을 개발하고 금강수계에 위치한 대청댐 하류구간을 대상으로 2002년 9월과 10월에 실측한 유량과 수질자료를 이용하여 보정과 검증을 각각 수행하였다. 그리고 대청댐의 단기간 플러싱 방류가 하류하천의 수질변화에 미치는 영향을 조사하기 위해 2003년 11월22일에 댐 방류량을 30 $m^3$/s에서 200 $m^3$/s로 6시간동안 증가시켜 수리와 수질실험을 실시하였으며, 모형의 성능을 검증하기 위해 플러싱 방류 사상 동안 하천의 수리특성과 수질변화를 모의하고 실측자료와 비교하였다 모형은 댐 방류량의 주요지점 도달시간과 수위상승을 잘 모의하였으며, 암모니아성 질소와 용존 인 등 질소와 인계통의 수질변화도 비교적 잘 예측하였다. 그러나 탄소계 유기물질로 인해 발생하는 산소요구량의 모의에서 실측자료와 큰 편차를 보였으며 이것은 댐 방류량이 하천을 통과할 때 하천 저니층으로부터 재부상한 유기물질의 영향을 모형에서 적절히 반영하지 못한 때문으로 판단된다.

Keywords

References

  1. 건설교통부 (2002), 금강수계 하천정비기본계획
  2. 동화기술편집위원회 (1998), 수질오염, 대기오염, 토양오염 공정시험법
  3. 정세웅, 고익환 (2003), '수량.수질 통합 하천운영 지원을 위한 하천수질모형 구축' 한국수자원학회 학술발표회논문집(I), pp. 373-376
  4. 정세웅, 고익환, 김남일 92004), '1차원 비정상상태 하천수질모의를 위한 KORIV1-WIN 개발' 2004년도 한국수자원학회 학술발표회논문집, P. 108
  5. 한건연, 김광섭 (1995), '낙동강 유역에서의 독성오염물 배출에 따른 수질해석 모형의 개발,' 한국수자원학회지 28(1), pp. 57-69
  6. 한건연, 김광섭, 박재흥 (1994), '하천으로 유입된 오염물의 유동해석을 위한 동력학적 모형의 개발,' 한국수문학회지 27(4), pp. 145-154
  7. 한국수자원공사 (1999), 대청댐 하류 오염물질 이송확신예측 및 저감대책에 관한 연구
  8. 한국수자원공사 (1996), 대하천에서의 오염물질 이송확산과 저감대책에 관한 연구
  9. Ambrose, R., Wool, T., and Martin, J. (1993). The Water Quality Analysis Simulation Program, WASP5, U.S. Environmental Protection Agency, Center for Exposure Assessment Modeling, Athens, GA, USA
  10. Barillier, A., Garnier, J., and Coste, M (1993). 'Experimental reservoir water release: Impact on the water quality on a river 60 km downstream' (upper seine river, France), Wat. Res., Vol. 27, No. 4, pp.635-643 https://doi.org/10.1016/0043-1354(93)90173-F
  11. Brown, L. C., Barnwell, T O. Jr. (1987). The enhenced stream water quality models QUAL2E and QUAL2E-UNCAS: Documentation and User Manual, Environmental Research Laooratory Office of Research and Development, U.S. Environmental Protection Agency, Athens, Georgia
  12. California Department of Water Resources (2002). DSM2 Tutorial: An introduction to the Delta Simulation Model II (DSM2) for simulation of hydrodynamics and water quality of the Sacramento-San Joaquin Delta
  13. Chapra, S. C. (1999). Surface Water-Quality Modeling, McGraw-Hill
  14. Cho, Jae-Heon (2001). 'The impact of hydroelectric power plant discharge on the water quality of the Namde River.' Environ. Eng. Res. Vol. 6, No.3, pp.123-130
  15. Environmental Laboratory (1995). CE-QUAL-RIV1: A Dynamic, One- Dimensional(Longitudinal) Water Quality Model for Streams User's Mannual, U.S. Army Corps of Engineers, Waterway Experiment Station, MS, USA
  16. Jobson, H. E., and Schoellhamer, D. H. (1987). Users manual for a Branched Lagragian Transport Model, U.S. Geological Survey Water Resources Investigation Report 87-4163
  17. Martin, J. L., and McCutcheon, S. C. (1999). Hydrodynamics and Transport for Water Quality Modeling, CRC Press, Inc.
  18. Martin, J. L., and Wool, T (2002). A dynamic one-dimensional model of hydrodynamics and water quality EPD-RIV1 User's Manual
  19. Schnoor, J. L. (1996). Environmental Modeling: Fate and transport of pollutants in water, air, and soil, John Wiley & Sons, Inc.
  20. Tanaka, N., Osugi, T., Nanami, Y., Okano, M. (2004). 'Methods of environmental restoration for downstream of dams,' In Proceedings for Symposium on Environmental Considerations for Sustainable Dam Projects, ICOLD 72nd Annual Meeting, May 16-22, 2004, Seoul, Korea. p.45

Cited by

  1. Assessment of Future River Environment considering Climate Change and Basin Runoff Characteristics vol.47, pp.3, 2014, https://doi.org/10.3741/JKWRA.2014.47.3.269
  2. Hydrodynamic and water quality modeling for gate operation: A case study for the Seonakdong River basin in Korea vol.18, pp.1, 2014, https://doi.org/10.1007/s12205-013-0025-6
  3. Assessing Future River Environments in the Seomjin River Basin due to Climate Change vol.143, pp.5, 2017, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001188
  4. A Investigation and Analysis of Water Temperature by Juam Regulation Dam Outflow in Downstream and Suncheon Bay vol.48, pp.6, 2015, https://doi.org/10.3741/JKWRA.2015.48.6.501