Tissue Transglutaminase is Not Involved in the Aggregate Formation of Stably Expressed $\alpha$-Synuclein in SH-SY5Y Human Neuroblastoma Cells

  • Suh, Myung-Duk (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Park, Chang-Ha (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kim, Sung-Soo (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kil, Myeng-Og (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Lee, Geon-Hee (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Johnson, Gail V. W. (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Chun, Wan-Joo (Department of Psychiatry, University of Alabama at Birmingham)
  • Published : 2004.08.01

Abstract

Intraneuronal deposition containing $\alpha$-synuclein is implicated in the pathogenesis of synuclein-opathies including Parkinsons disease (PD). Although it has been demonstrated that cytoplas-mic inclusions of wild type $\alpha$-synuclein are observed in the brain of PD patients and that $\alpha$-synuclein mutations such as A30P and A53T accelerate aggregate formation, the exact mech-anism by which $\alpha$-synuclein forms insoluble aggregates is still controversial. In the present study, to understand the possible involvement of tissue transglutaminase (tTG) in aggregate formation of $\alpha$-synuclein, SH-SY5Y cell lines stably expressing wild type or mutant (A30P or A53T) $\alpha$-synuclein were created and aggregate formation of $\alpha$-synuclein was observed upon activation of tTG. The data demonstrated that $\alpha$-synuclein negligibly interacted with tTG and that activation of tTG did not result in the aggregate formation of $\alpha$-synuclein in SH-SY5Y cells overexpressing either wild type or mutant $\alpha$-synuclein. In addition, $\alpha$-synuclein was not modi-fied by activated tTG in situ. These data suggest that tTG is unlikely to be a contributing factor to the formation of aggregates of $\alpha$-synuclein in a stable cell model.

Keywords

References

  1. Andringa, G., Lam, K. Y., Chegary, M., Wang, X., Chase, T. N., and Bennett, M. C., Tissue transglutaminase catalyzes the formation of alpha-synuclein crosslinks in Parkinson's disease. FASEB J., 18, 932-934 (2004)
  2. Conway, K. A., Harper, J. D., and Lansbury, P. T., Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med., 4, 1318-1320 (1998) https://doi.org/10.1038/3311
  3. Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E., and Lansbury, P. T., Jr. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. U.S.A., 97, 571-576 (2000) https://doi.org/10.1073/pnas.97.2.571
  4. Davidson, W. S., Jonas, A., Clayton, D. F., and George, J. M., Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol. Chem., 273, 9443-9449 (1998) https://doi.org/10.1074/jbc.273.16.9443
  5. Folk, J. E., Mechanism and basis for specificity of transglutaminase-catalyzed epsilon-(gamma-glutamyl) lysine bond formation. Adv. Enzymol. Relat. Areas Mol. Biol., 54, 1-56 (1983) https://doi.org/10.1002/9780470122990.ch1
  6. Galvin, J. E., Lee, V. M., and Trojanowski, J. Q., Synucleino-pathies: clinical and pathological implications. Arch. Neurol., 58, 186-190 (2001) https://doi.org/10.1001/archneur.58.2.186
  7. Giasson, B. I., Uryu, K., Trojanowski, J. Q., and Lee, V. M., Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J. Biol. Chem., 274, 7619-7622 (1999) https://doi.org/10.1074/jbc.274.12.7619
  8. Green, H., Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism [letter]. Cell, 74, 955-956 (1993) https://doi.org/10.1016/0092-8674(93)90718-6
  9. Greenberg, C. S., Birckbichler, P. J., and Rice, R. H., Trans-glutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J., 5, 3071-3077 (1991)
  10. Ho, G. J., Gregory, E. J., Smirnova, I. V., Zoubine, M. N., and Festoff, B. W., Cross-linking of beta-amyloid protein precursor catalyzed by tissue transglutaminase. FEBS Lett., 349, 151-154 (1994) https://doi.org/10.1016/0014-5793(94)00663-6
  11. Junn, E., Ronchetti, R. D., Quezado, M. M., Kim, S. Y., and Mouradian, M. M., Tissue transglutaminase-induced aggreg-ation of alpha-synuclein: Implications for Lewy body formation in Parkinson's disease and dementia with Lewy bodies. Proc. Natl Acad. Sci. U.S.A., 100, 2047-2052 (2003) https://doi.org/10.1073/pnas.0438021100
  12. Kanda, S., Bishop, J. F., Eglitis, M. A., Yang, Y., and Mouradian, M. M., Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation. Neuroscience, 97, 279-284 (2000) https://doi.org/10.1016/S0306-4522(00)00077-4
  13. Karpuj, M. V., Garren, H., Siunt, H., Price, D. L., Gusella, J., Becher, M. W., and Steinman, L., Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington's disease brain nuclei. Proc. Natl. Acad. Sci. U.S.A., 96, 7388-7393 (1999) https://doi.org/10.1073/pnas.96.13.7388
  14. Ko, L., Mehta, N. D., Farrer, M., Easson, C., Hussey, J., Yen, S., Hardy, J., and Yen, S. H., Sensitization of neuronal cells to oxidative stress with mutated human alpha-synuclein. J. Neurochem., 75, 2546-2554 (2000) https://doi.org/10.1046/j.1471-4159.2000.0752546.x
  15. Krishnan, S., Chi, E. Y., Wood, S. J., Kendrick, B. S., Li, C., Garzon-Rodriguez, W., Wypych, J., Randolph, T. W., Narhi, L. O., Biere, A. L., Citron, M., and Carpenter, J. F., Oxidative dimer formation is the critical rate-limiting step for Parkinson's disease alpha-synuclein fibrillogenesis. Biochemistry, 42, 829-837 (2003) https://doi.org/10.1021/bi026528t
  16. Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J.T., Schols, L., and Riess, O., Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat. Genet., 18, 106-108 (1998) https://doi.org/10.1038/ng0298-106
  17. Lai, T. S., Slaughter, T. F., Peoples, K. A., Hettasch, J. M., and Greenberg, C. S., Regulation of human tissue transglutaminase function by magnesium-nucleotide complexes. Identification of distinct binding sites for Mg-GTP and Mg-ATP. J. Biol. Chem., 273, 1776-1781 (1998) https://doi.org/10.1074/jbc.273.3.1776
  18. Lesort, M., Chun, W., Johnson, G. V., and Ferrante, R. J., Tissue transglutaminase is increased in Huntington's disease brain. J. Neurochem., 73, 2018-2027 (1999) https://doi.org/10.1046/j.1471-4159.1999.02018.x
  19. Lorand, L. and Conrad, S. M., Transglutaminases. Mol. Cell Biochem., 58, 9-35 (1984) https://doi.org/10.1007/BF00240602
  20. Lotharius, J. and Brundin, P., Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci., 3, 932-942 (2002) https://doi.org/10.1038/nrn983
  21. Miller, C. C. and Anderton, B. H., Transglutaminase and the neuronal cytoskeleton in Alzheimer's disease. J. Neurochem., 46, 1912-1922 (1986) https://doi.org/10.1111/j.1471-4159.1986.tb08513.x
  22. Miller, M. L. and Johnson, G. V., Transglutaminase cross-linking of the tau protein. J. Neurochem., 65, 1760-1770 (1995) https://doi.org/10.1046/j.1471-4159.1995.65041760.x
  23. Narhi, L., Wood, S. J., Steavenson, S., Jiang, Y., Wu, G. M., Anafi, D., Kaufman, S. A., Martin, F., Sitney, K., Denis, P., Louis, J. C., Wypych, J., Biere, A. L., and Citron, M., Both familial Parkinson's disease mutations accelerate alpha-synuclein aggregation. J. Biol. Chem., 274, 9843-9846 (1999) https://doi.org/10.1074/jbc.274.14.9843
  24. Olanow, C. W. and Tatton, W. G., Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci., 22, 123-144 (1999) https://doi.org/10.1146/annurev.neuro.22.1.123
  25. Ostrerova-Golts, N., Petrucelli, L., Hardy, J., Lee, J. M., Farer, M., and Wolozin, B., The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci., 20, 6048-6054 (2000)
  26. Paik, S. R., Lee, J. H., Kim, D. H., Chang, C. S., and Kim, Y. S., Self-oligomerization of NACP, the precursor protein of the non-amyloid beta/A4 protein (A beta) component of Alzheimer's disease amyloid, observed in the presence of a C-terminal A beta fragment (residues 25-35). FEBS Lett., 421, 73-76 (1998) https://doi.org/10.1016/S0014-5793(97)01537-8
  27. Paxinou, E., Chen, Q., Weisse, M., Giasson, B.I., Norris, E. H., Rueter, S. M., Trojanowski, J. Q., Lee, V. M., and Ischiropoulos, H., Induction of alpha-synuclein aggregation by intracellular nitrative insult. J. Neurosci., 21, 8053-8061(2001)
  28. Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., and Nussbaum, R. L., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 276, 2045-2047 (1997) https://doi.org/10.1126/science.276.5321.2045
  29. Selkoe, D. J., Abraham, C., and Ihara, Y., Brain transglutaminase: in vitro crosslinking of human neurofilament proteins into insoluble polymers. Proc. Natl. Acad. Sci. U.S.A., 79, 6070-6074 (1982) https://doi.org/10.1073/pnas.79.19.6070
  30. Sherer, T. B., Betarbet, R., Stout, A. K., Lund, S., Baptista, M., Panov, A. V., Cookson, M. R., and Greenamyre, J. T., An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J. Neurosci., 22, 7006-7015 (2002)
  31. Voiles, M. J. and Lansbury, P. T., Jr., Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson's disease. Biochemistry, 42, 7871-7878 (2003) https://doi.org/10.1021/bi030086j
  32. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., and Lansbury, P.T., Jr., NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry, 35, 13709-13715 (1996) https://doi.org/10.1021/bi961799n
  33. Wood, S. J., Wypych, J., Steavenson, S., Louis, J. C., Citron, M., and Biere, A. L., Alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson's disease. J. Biol. Chem., 274, 19509-19512 (1999) https://doi.org/10.1074/jbc.274.28.19509
  34. Xie, H., Litersky, J. M., Hartigan, J. A., Jope, R. S., and Johnson, G. V., The interrelationship between selective tau phosphorylation and microtubule association. Brain Res., 798, 173-183 (1998) https://doi.org/10.1016/S0006-8993(98)00407-7
  35. Zhang, J., Guttmann, R. P., and Johnson, G. V., Tissue transglutaminase is an in situ substrate of calpain: regulation of activity. J. Neurochem., 71, 240-247(1998a) https://doi.org/10.1046/j.1471-4159.1998.71010240.x
  36. Zhang, J., Lesort, M., Guttmann, R. P., and Johnson, G. V., Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J. Biol. Chem., 273, 2288-2295 (1998b) https://doi.org/10.1074/jbc.273.4.2288
  37. Zourlidou, A., Payne Smith, M. D., and Latchman, D. S., Modulation of cell death by alpha-synuclein is stimulus-dependent in mammalian cells. Neurosci. Lett., 340, 234-238 (2003) https://doi.org/10.1016/S0304-3940(03)00081-8