Anti-Diabetic Effects of DA-11004, a Synthetic IDPc Inhibitor in High Fat High Sucrose Diet-Fed C57BL/6J Mice

  • Shin, Chang-Yell (Research Laboratories, Dong-A Pharm. Co. Ltd.) ;
  • Jung, Mi-Young (Research Laboratories, Dong-A Pharm. Co. Ltd.) ;
  • Lee, In-Ki (Research Laboratories, Dong-A Pharm. Co. Ltd.) ;
  • Son, Mi-Won (Research Laboratories, Dong-A Pharm. Co. Ltd.) ;
  • Kim, Dong-Sung (Research Laboratories, Dong-A Pharm. Co. Ltd.) ;
  • Lim, Joong-In (Research Laboratories, Dong-A Pharm. Co. Ltd.) ;
  • Kim, Soon-Hoe (Research Laboratories, Dong-A Pharm. Co. Ltd.) ;
  • Yoo, Moo-Hi (Research Laboratories, Dong-A Pharm. Co. Ltd.) ;
  • Huh, Tae-Lin (TG Biotech Co. Ltd, RM 507 Techno B/D, Kyungpook National University) ;
  • Sohn, Young-Taek (College of Pharmacy, Duksung Womens University) ;
  • Kim, Won-Bae (Research Laboratories, Dong-A Pharm. Co. Ltd.)
  • Published : 2004.01.01

Abstract

DA-11004 is a synthetic, potent NADP-dependent isocitrate dehydrogenase (IDPc) inhibitor where $IC_{50}$ for IDPc is 1.49 $\mu$M. The purpose of this study was to evaluate the effects of DA-11004 on the high fat high sucrose (HF)-induced obesity in male C57BL/6J mice. After completing a 8-week period of experimentation, the mice were sacrificed 1hr after the last DA-11004 treatment and their blood, liver, and adipose tissues (epididymal and retroperitoneal fat)were collected. There was a significant difference in the pattern of increasing body weight between the HF control and the DA-11004 group. In the DA-11004 (100 mg/kg) treated group the increase in body weight significantly declined and a content of epididymal fat and retroperitoneal fat was also significantly decreased as opposed to the HF control. DA-11004 (100 mg/kg) inhibited the IDPc activity, and thus, NADPH levels in plasma and the levels of free fatty acid (FFA) or glucose in plasma were less than the levels of the HF control group. In conclusion, DA-11004 inhibited the fatty acid synthesis in adipose tissues via IDPc inhibition, and it decreased the plasma glucose levels and FFA in HF diet-induced obesity of C57BL/6J mice.

Keywords

References

  1. Boden, G., Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 46, 3-10 (1997) https://doi.org/10.2337/diabetes.46.1.3
  2. Bruinenberg, P. M., van Dijken, J. P., and Scheffers, W. A., An enzymic analysis of NADPH production and consumption in Candida utilis. J. Gen. Microbiol., 129, 965-971 (1983)
  3. Elks, M. L., Chronic perifusion of rat islets with palmitate suppresses glucose-stimulated insulin release. Endocrinology, 133, 208-214 (1993) https://doi.org/10.1210/en.133.1.208
  4. Flegal, K. M., Carroll, M. D., Kuczmarski, R. J., and Johnson, C. L., Overweight and obesity in the United States: prevalence and trends, 1960-1994. Int. J. Obes. Relat. Metab. Disord., 22, 39-47 (1998) https://doi.org/10.1038/sj.ijo.0800541
  5. Halliwell, B., Free radicals and antioxidants: a personal view. Nutr. Rev., 52, 253-265 (1994) https://doi.org/10.1111/j.1753-4887.1994.tb01453.x
  6. Kahn, B. B. and Flier, J. S., Obesity and insulin resistance. J. Clin. Invest., 106, 473-481 (2000) https://doi.org/10.1172/JCI10842
  7. Minard, K. I., Jennings, G. T., Loftus, T. M., Xuan, D., and McAlister-Henn, L., Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae. J. BioI. Chem., 273, 31486-31493 (1998) https://doi.org/10.1074/jbc.273.47.31486
  8. Raunio, R. P., Lovgren, T. N., and Kurkijarvi, K., Bioluminescent assay of NADPH-dependent isocitrate dehydrogenase and its substrates and cofactors. Anal. Biochem., 150, 315-319 (1985)
  9. Reaven, G. M., Insulin resistance, hyperinsulinemia, hypertriglyceridemia, and hypertension. Parallels between human disease and rodent models. Diabetes Care, 14, 195-202 (1991) https://doi.org/10.2337/diacare.14.3.195
  10. Spiegelman, B. M. and Flier, J. S., Obesity and the regulation of energy balance. Cell, 104, 531-543 (2001) https://doi.org/10.1016/S0092-8674(01)00240-9
  11. Storlien, L. H., Baur, L. A., Kriketos, A. D., Pan, D. A., Cooney, G. J., Jenkins, A . B., Calvert, G. D., and Campbell, L. V., Dietary fats and insulin action. Diabetologia, 39, 621-631 (1996) https://doi.org/10.1007/BF00418533
  12. Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A., and Feinglos, M. N., Diet-induced type II diabetes in C57BL/6J mice. Diabetes, 37, 1163-1167 (1988) https://doi.org/10.2337/diabetes.37.9.1163
  13. Surwit, R. S., Seldin, M. F., Kuhn, C. M., Cochrane, C., and Feinglos, M. N., Control of expression of insulin resistance and hyperglycemia by different genetic factors in diabetic C57BL/6J mice. Diabetes, 40, 82-87 (1991) https://doi.org/10.2337/diabetes.40.1.82
  14. van Roermund, C. W., Hettema, E. H., Kal, A . J., van den Berg, M., Tabak, H. F., and Wanders, R. J., Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions. Embo. J., 17, 677-687 (1998) https://doi.org/10.1093/emboj/17.3.677
  15. West, D. B., Boozer, C. N., Moody, D. L., and Atkinson, R. L., Dietary obesity in nine inbred mouse strains. Am. J. Physiol., 262, R1025-1032, (1992)
  16. Yechoor, V. K., Patti, M. E., Saccone, R., and Kahn, C. R., Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice. Proc. Natl. Acad. Sci. USA, 99, 10587-10592 (2002) https://doi.org/10.1073/pnas.142301999
  17. Yin, W., Yuan, Z., Tsutsumi, K., Xie, Y., Zhang, Q., Wang, Z., Fu, G., Long, G., and Yang, Y., A Lipoprotein Lipase-Promoting Agent, NO-1886, Improves Glucose and Lipid Metabolism in High Fat, High Sucrose-Fed New Zealand White Rabbits. Int. J. Exp. Diabetes Res., 4(1), 27-34 (2003) https://doi.org/10.1080/15438600303732
  18. Zhou, Y. P.and Grill, V. E., Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J. Clin. Invest., 93, 870-876 (1994) https://doi.org/10.1172/JCI117042