Numerical Calculation of Energy Release Rates by Virtual Crack Closure Technique

  • Choi, Jae-Boong (SAFE Research Centre, School of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Young-Jin (SAFE Research Centre, School of Mechanical Engineering, Sungkyunkwan University) ;
  • Yagawa, Genki (Department of Quantum Engineering &)
  • Published : 2004.11.01

Abstract

A seamless analysis of material behavior incorporating complex geometry and crack- tip modeling is one of greatly interesting topics in engineering and computational fracture mechanics fields. However, there are still large gaps between the industrial applications and fundamental academic studies due to a time consuming detailed modeling. In order to resolve this problem, a numerical method to calculate an energy release rate by virtual crack closure technique was proposed in this paper. Both free mesh method and finite element method have been utilized and, thereafter, robust local and global elements for various geometries and boundary conditions were generated. A validity of the proposed method has been demonstrated through a series of fracture mechanics analyses without tedious crack-tip meshing.

Keywords

References

  1. ABAQUS Ver. 6.2, 2001, 'User's Manual,' Hibbitt, Karlsson & Sorensen Inc.
  2. Belytschko, T. and Black, T., 1999, 'Elastic Crack Growth in Finite Elements with Minimal Remeshing,' International Journal for Numerical Methods in Engineering, Vol. 45, pp. 601-620 https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  3. Belytschko, T., Moes, N., Usui, S. and Parimi, C., 1999, 'Arbitrary Discontinuity in Finite Elements,' International Journal for Numerical Methods in Engineering, Vol. 50, pp.993-1013 https://doi.org/10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
  4. Bocca, P., Carpinteri, A. and Valente, S., 1991, 'Mixed-mode Fracture of Concrete,' International Journal of Solid Structure, Vol. 27, No. 9, pp.1139-1153 https://doi.org/10.1016/0020-7683(91)90115-V
  5. Cho, J. Y. and Jee, Y. B., 2003, 'An Adaptive Mesh-Independent Numerical Integration for Meshless Local Petrov-Galerkin Method,' KSME International Journal, Vol. 17, No. 7, pp. 986-998
  6. Choi, Y. J. and Kim, S. J., 2003, 'Bending Analysis of Mindlin-Reissner Plates by the Element Free Galerkin Method with Penalty Technique,' KSME International Journal, Vol. 17, No. 1, pp. 64-76
  7. Duarte, C. A. et al., 2001, 'A Generalized Finite Element Method for the Simulation of Three-Dimensional Dynamic Crack Propagation,' Computer Methods in Applied Mechanics and Engineering, Vol. 190, Nos. 15-17, pp. 2227-2262 https://doi.org/10.1016/S0045-7825(00)00233-4
  8. Inaba, M., Fujisawa, T. and Yagawa, G., 2002, 'A New Algorithm of Local Mesh Generation for the Free Mesh Method,' Proceedings of JSME Dynamics and Design Conference, p. 338
  9. Ingraffea, A. and Wawrzynek, P., 1995, 'FRANC2D : A Case Study in Transfer of Software Technology, in Research Transformed into Practice,' ASCE Press
  10. Jin, C. and Suzuki, K., 2000, 'Methodology and Property of Cover Least Square Approximation,' Transactions of the Japan Society for Computational Engineering and Science, Vol. 2, pp.213-218
  11. Khan, S. M. A. and Khraisheh, M. K., 2000, 'Analysis of Mixed Mode Crack Initiation Angles under Various Loading Conditions,' Engineering Fracture Mechanics, Vol. 67, No. 5, pp.397-419 https://doi.org/10.1016/S0013-7944(00)00068-0
  12. Khraisheh, M. K. and Khan, S. M. A., 2000, 'Maximum Stress Triaxiality Ratio Criterion for Mixed Mode Crack Initiation in Anisotropic Materials,' International Journal of Fracture, Vol. 104, No. 3, pp. 11-16 https://doi.org/10.1023/A:1007632919325
  13. Krueger, R., 2002, 'The Virtual Crack Closure Technique: History, Approach and Application,' NASA/CR-2002-211628
  14. Maiti, S. K., 1992, 'Finite Element Computation of Crack Closure Integrals and Stress Intensity Factors,' Engineering Fracture Mechanics, Vol. 41, No. 3, pp. 339-348 https://doi.org/10.1016/0013-7944(92)90075-P
  15. Margevicius, R. W., Riedle, J. and Gumbsch, P., 1999, 'Fracture Toughness of Polycrystalline Tungsten under Mode I and Mixed Mode I/II Loading,' Materials Science and Engineering, Vol. A270, pp. 197-209 https://doi.org/10.1016/S0921-5093(99)00252-X
  16. Melenk, J. M. and Babuska, I., 1996, 'The Partition of Unity Finite Element Method : Basic Theory and Applications,' Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp.289-314 https://doi.org/10.1016/S0045-7825(96)01087-0
  17. Murakami, Y. et al., 1987, 'Stress-Intensity Factors Handbook,' Vol. 1, Pergammon Press, Tokyo
  18. Rahman, S. and Rao, B. N., 2002, 'Probabilistic Fracture Mechanics by Galerkin Meshless Methods - Part II: Reliability Analysis,' Computational Mechanics, Vol. 28, No. 5, pp.365-374 https://doi.org/10.1007/s00466-002-0300-8
  19. Raju, I. S., 1987, 'Calculation of Strain Energy Release Rates with Higher Order and Singular Finite Elements,' Engineering Fracture Mechanics, Vol. 28, No. 3, pp. 251-274 https://doi.org/10.1016/0013-7944(87)90220-7
  20. Rybicki, E. F. and Kanninen, M. F., 1977, 'A Finite. Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral,' Engineering Fracture Mechanics, Vol. 9, No. 8, pp.931-938 https://doi.org/10.1016/0013-7944(77)90013-3
  21. Shivakumar, A. K., Tan, P. W. and Newman, J. C. Jr., 1988, 'A Virtual Crack-closure Technique for Calculating Stress Intensity Factors for Cracked 3-dimensional Bodies,' International Journal of Fracture, Vol. 36, R43-R50 https://doi.org/10.1007/BF00035103
  22. Singh, R. et al., 1998, 'Universal Crack Closure Integral for SIF Estimation,' Engineering Fracture Mechanics, Vol. 60, No. 2, pp. 133-146 https://doi.org/10.1016/S0013-7944(98)00008-3
  23. Wawrzynek, P. A. and Ingraffea, A. R., 1989, 'An Interactive Approach to Local Remeshing Around a Propagation Crack,' Finite Element Analysis Design, Vol. 5, pp. 87-96 https://doi.org/10.1016/0168-874X(89)90008-5
  24. Xie, M., Gerstle, W. H. and Rahulkumar, P., 1995, 'Energy-based Automatic Mixed-mode Crack Propagation Modeling,' Journal of Engineering Mechanics ASCE, Vol. 121, No. 8, pp.914-923 https://doi.org/10.1061/(ASCE)0733-9399(1995)121:8(914)
  25. Yagawa, G. and Yamada, T., 1996, 'Free Mesh Method : A New Meshless Finite Element Method,' Computational Mechanics, Vol. 18, No. 5, pp. 383-386 https://doi.org/10.1007/BF00376134
  26. Yagawa, G. and Furukawa, T., 2000, 'Recent Development of Free Mesh Method,' International Journal for Numerical Methods in Engineering, Vol. 17, pp. 1419-1443 https://doi.org/10.1002/(SICI)1097-0207(20000320)47:8<1419::AID-NME837>3.0.CO;2-E
  27. Yagawa, G. et al., 2003, 'Research on Fatigue Properties under Multi-axial State of Stress,' Japan Welding Engineering Society
  28. http://www-users.cs.umn.edu/-karypis/metis, 'Family of Multilevel Partitioning Algorithms,' 2003