Abstract
Manufacturing of complex surface plates in stern and stem is a major factor in cost of a preliminary ship design by computing process. If these hull plate parts are effectively classified, it helps to compute the processing cost and find the way to cut-down the processing cost. This paper presents a new method to classify surface plates effectively in the preliminary ship design using neural network. A neural-network-based ship hull plate classification program was developed and tested for the automatic classification of ship design. The input variables are regarded as Gaussian curvature distributions on the plate. Various applicable rules of network topology are applied in the ship design. In automation of hull plate classification, two different numbers of input variables are used. By observing the results of the proposed method, the effectiveness of the proposed method is discussed. As a result, high prediction rate was achieved in the ship design. Accordingly, to the initial design stage, the ship hull plate classification program can be used to predict the ship production cost. And the proposed method will contribute to reduce the production cost of ship.