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1. Introduction

A system, in general, is a set of possibly interconnected
or interdependent components, such that the state of the
system depends on the states of its constituent components.
In case the failure of a structure is the system event of

interest, for example, the failure of structural elements

or the failure modes can be considered as its component
events. The state of a system composed of a set of
components in general can be expressed as a Boolean
or logical function of the component states. Considering
two-state components and systems, let £ denote the
event of failure of component i i=1, ..., n, and E: denote
its complement, the survival of the component.
Likewise, let £ yqem denote the event of failure of the
system and Z system denote its survival, For three classes
of systems, the relations between the component states
and the system state are as follows:

Series systems : & gystem= UE (D

t=1

Parallel systems : & gygem= ﬁE 2)
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General systems : Fgystem=

In the case of “general,” i.e., non-series and non-parallel,
systems, the system failure event is defined in terms
of cut sets Ci, k=1,.., X, where each cut set is a set
of components, whose joint failure constitutes failure
of the system.

Once the system state is formulated as in (1)-(3),
the system failure probability, or its complement, the
system reliability, can be expressed as the probability
of the logical function. The exact computation of this
probability is often costly or unavailable due to the
complexity of the system or lack of complete probability
information. For these reasons, theoretical bounding
formulas have been derived in terms of marginal or
joint component probabilities. These include uni-
component bounds for series and parallel systems(Boole
1834), and bi-component(Kounias 1968, Hunter 1976,
Ditlevsen 1979) and multi~component(Hohenbichler and
Rackwitz 1983, Zhang 1993) bounds for series systems.
The latter bounds can also be used for parallel systems

after such systems are converted to series systems by
use of de Morgan’s rule. No theoretical bounding formulas are
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available for general systems. See Song and Der
Kiureghian (2003a) for a detailed review of these bounding
formulas.

Recently, Song and Der Kiureghian(2003a) developed
a new method for structural system reliability by use
of linear programming(LP). The idea of using LP for
computing bounds on system failure probability was
first explored by Hailperin(1965). Specialized versions
of this approach were employed in operations research
(Prékopa 1988). However, it appears that this approach
has never been used in the field of structural reliability
or civil engineering. LP bounds are applicable to any
type of system and any level of information regarding
the component probabilities. Equally important, these
bounds are the narrowest possible bounds that one can
obtain for any specified information regarding the
marginal or joint component probabilities. Although
the resulting LP problem can be large for a system
with many components, with the enormous increase in
the speed and capacity of computers in recent years, it
is believed that the LP approach is viable and a
powerful tool for many system reliability problems.

After briefly describing the LP bounds methodology,
this article presents two recent developments made for
the approach. First, Song and Der Kiureghian(2004a)
developed a method to identify the critical components
and cut sets by use of LP. It is shown that one can
easily compute various importance measures for
components and cut sets by use of the LP approach,
even when there is stafistical dependence between the
component failure events. Secondly, as an effort for
applying the LP approach to large-scale systems even
with limited computing power, an approximate method
is developed to reduce the size of the LP problem by
treating selected subsets of component as “super-
components” (Song and Der Kiureghian 2004b). In this
manner, the large LP problem is replaced with a number
of smaller LP problems. The developed methodologies
are demonstrated by an electrical substation example.

2. Bounds on Sysiem Reliability
by Linear Programming

LP solves the problem of minimizing (maximizing) a

linear function, whose variables are subject to linear
equality or inequality constraints. LP gained worldwide
interests when G.B. Dantzig developed the simplex
method in 1947 (Dantzig 1951). Since then, encouraged
by dramatic improvements in computing technology,
many powerful algorithms have been developed and a
profound mathematical understanding of the problem
has been gained.

Among various equivalent forms of LP’s, the
compact formulation of LP appropriate for our analysis

has the following form:

minimize (maximize) ¢”p (4a)
subject to ap=Dh (4b)
a,p=b, (4C)

In the above, p= (p1, ps,--+) is the column vector of
“decision” or “design” variables, ¢'p with ¢ a vector
of coefficients is the linear “objective” or “cost”
function, and a;, by, a, and b, are coefficient matrices
and vectors that respectively define equality and
inequality constraints. In (4c), the inequality between
the vectors must be interpreted component-wise. A
vector p is called “feasible” if it satisfies all the given
constraints. The solution of the LP problem is a
feasible p that minimizes (maximizes) the objective
function.

Hailperin(1965) showed that the problem of finding
bounds on the probability of a Boolean function is a
LP problem. He first divided the sample space of the n
component events into 2" mutually exclusive and
collectively exhaustive (MECE) events, each consisting
of a distinct intersection of the component events £
and their complements E ,, i=1, n. Let us name
these the ‘basic’ MECE events and denote them by
e;, i=1, ..., 2" As an example, Figure 1 shows the
basic MECE events for the case with n=3. Let
p;=Ple;),i=1, ..., 2", denote the probabilities of the
basic MECE events. These probabilities serve as the
design variables in the LP problem to be formulated.
According to the basic axioms of probability theory, p,
i=1,...,2", should satisfy the following linear constraints:
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;
dp=1 (50)

p; =0, Vi (5b)

The constraint (5a) is analogous to (4b) with a;
being a row vector of 1's and b; =1, whereas (5b) is
analogous to (4c) with a, being an identity matrix of

size 2" and by a 2"-vector of 0's.

Fig 1. Basic MECE events e for a 3-event

sample space

Due to mutual exclusivity of the basic MECE
events, the probability of any subset made of these
events is the sum of the corresponding probabilities. In
particular, the probability of any component event £
is the sum of the probabilities of the basic MECE
events that constitute that component event. Similarly,
the probability of any intersection of the component
events 1s given as the sum of the probabilities of the
basic MECE events that constitute the intersection

event. Therefore, we can write

P(E)=F = Dy (6a)
reS K
P(EE) = P, = b, (6b)
e S KE
P(EEE)=Pyx= Y, », (6c)

and so on.

In most system reliability problems, the uni- , bi~ and
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sometimes tri-component probabilities (£, F; and
Py.) are known or can be computed. In that case, the
above expressions provide linear equality constraints

on the variables p in the form of (4b) with ; a matrix

having elements of 0 or 1 and b, a vector listing the
known component probabilities. If, instead, inequality
constraints on component probabilities are given, such
as £, <001, 001<P;<003 or = P then the
above expressions provide linear inequality constraints
on the variables p in the form of (4c).

Any Boolean function of the component events can
also be considered as being composed of a subset of
the basic MECE events. It follows that the probability
of the system event £gsem can be written in the form
P(E gsem)=¢ P, Where € is a vector whose elements
are either 0 or 1. The lower bound of the system
probability is obtained by minimizing the objective
function, and the upper bound is obtained by maximizing

the same function. For a system with m» component
events, the number of design variables is 2"; one equality

and 2" inequality constraints result from the probability
axioms (5a) and (3b), respectively, 7 equality or inequality
constraints result from knowledge of uni~component
probabilities or their bounds as in (6a), n!/ [2!(n—2)!]
equality or inequality constraints result from knowledge
of bi-component probabilities or their bounds as in
(6h), and so on. Obviously the size of the LP problem
quickly grows with the number of component events.
The bounds by LP have many advantages over the
existing theoretical bounding formulas. First, LP is
guaranteed to provide the narrowest possible bounds,
if a feasible solution exists for the given constraints
(Hailperin 1965). This is not the case for the theoretical
bounds for series systems based on the multi-component
probabilities, even for the best ordering of the component
events. (Note that the LP formulation is independent of
the ordering of the component events.) Second, the LP
formulation is uniformly applicable to all systems,
including general systems characterized by unions and
intersections of component events(and their complements).
Third, the LP formulation can incorporate general
forms of information about the component probabilities.
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Specifically, any linear equality or ineguality expression
involving uni- or multi-~component probabilities can be
used. Finally, it is not necessary to have the complete
set of probabilities for all the components at a
particular, e.g., uni—, bi- or tri-component, level. Any
partial set of the component probabilities can be used.
Of course, incomplete information will lead to wider
bounds.

The LP bounds methodology was demonstrated by
application to three example structural systems(Song
and Der Kiureghian 2003a): a statically determinate
truss structure(series system), a bundle of ideally
brittle wires(parallel system) and a structural system
consisting of both brittle and ductile components
(general system). Song and Der Kiureghian(2003b)
demonstrated the usefulness of the LP approach also
in estimating and improving the seismic reliability of
an electrical substation which is a complex set of

interconnected equipment items.

3. lIdentification of Critical
Components and Cut Sets

An important objective in system reliability
assessment is the identification of critical components
and cut sets. These are defined as components or cut
sets which make significant contributions to the system
failure probability for a specified system performance
criterion and load hazard. When upgrading the system
reliahility is an objective, the identified critical components
and cut sets should be considered as prime candidates
for reinforcement and strengthening on a preferential
basis, especially when the system upgrade is subject
to cost or other constraints.

Various importance measures(IM) have been defined
for evaluating and ranking the contributions of
components and cut sets to the failure probability of a
system. When the component failure events are
statistically independent of each other, the IM’s can be
easily computed by use of the marginal component
failure probabilities(Henley and Kumamoto 1981;
Anders 1990). However, when there is dependence

between the component states, it is a daunting task to

compute the probabilities required for these measures,
including the system failure probability. An incomplete
set of component probabilities or inequality type
information on component probabilities would make
the task even more difficult.

The LP approach provides a convenient framework
for a systematic identification of critical components
and cut sets. The proposed method allows us to easily
compute various IM’s for components and cut sets,
even when there is statistical dependence between the
component failure events. Inheriting all the advantages
of the LP bounding methodology, this method is fairly
flexible in gathering information such that it can
incorporate incomplete sets of probabilities or inequality
-type constraints.

3.1 Importance Measures by LP Bounds

Suppose the bounds on the failure probability of a
system are obtained by solving the LP problem in (4)
for given information on component probabilities. Let
p denote the solution of P at the upper bound of the
system failure probability. The vector p stores the
probabilities of all the basic MECE events that
contribute to the upper bound of the system failure
probability. Therefore, the contribution of any event of
interest to the upper bound system failure probability
can be determined by simply adding the components of
p for the basic MECE events that are contained
within the specified event. This can be done by simple
algebraic manipulation of vectors and matrices. The
same can be done with the solution of P for the lower
bound of the system failure probability. In general, the
set of cntical components and cut sets and the
corresponding IM’s obtained based on the two system
bounds may be different. However, as the probahility
information increases and the two bounds approach
each other, the ordering of the critical components and
cut sets and the corresponding IM’s based on the two
bounds also tend to approach each other. In the
following, the formulas are described in general terms,
where either bound can be used. This subsection

introduces several well-known component and cut set

HATZTE A178 A35(2004. 9) 39



A&7

IM’s and shows how they can be easily determined by

use of the LP bounds formulation.

Fussell-Vesely Importance Measure

The Fussell-Vesely (FV) IM evaluates the fraction
of the system failure probability, which is contributed
by cut sets containing the component of interest
(Fussell 1973). For component i, the FV IM is defined

as

FV; = P(
ki E

Gc )/P(Esystem) (7)

(oA

n

This measure quantifies the contribution of each
component to the system failure probability. In the LP
formulation (4), the system failure probability in the
denominator 1s computed in terms of its lower or upper
bound. With the solution p available, the corresponding
probability in the numerator is computed as the vector

product

PCU =75 ®

k:E < C;

where af” is a row vector whose j-th element is 1 if

the j-th basic MECE event is included in the union of
the cut sets including the i1-th component, and 0
otherwise. It is noteworthy that the proposed method
computes the FV IM for general systems, regardless
of whether statistical dependence between the
component events exists or not. Furthermore, these
measures can be computed for the lower and upper
bounds of the system failure probability, even when
the available information on component probabilities is

incomplete or is in terms of inequalities.

Risk Achievement Worth

The failure of important components tends to
increase the failure probability of the system. The Risk
Achievement Worth (RAW) IM quantifies the importance
of a component by the increase in the system failure
probability when the component is removed from the

system (Borgonovo and Apostolakis 2001), ie., it is
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assumed to be perfectly unreliable. The RAW of the

i—th component is defined as
RA W = P('E;(;.ztem )/P(Esystem) (9)

where P(E%)..) denotes the failure probability of the
system with component ¢ removed. The system failure
probability in the denominator of (9) is obtained from
the original LP problem in (4). The probability in the
numerator is obtained by solving a new LP problem
formulated for the system with the i-th component
removed. This requires changes in the original LP
problem. For the details of these changes and a simpler
definition of RAW IM in the case of statistically
independent components, see Song(2004).

Risk Reduction Worth
The Risk Reduction Worth (RRW) IM measures the
decrease in the system failure probability when the
component of interest is replaced by a perfectly reliable
component, i.e., a component having zero probability of
failure(Vinod et al. 2003). Thus, the RRW of the i~th

component is

RRWZZ P(E system)/P(ES?tem) (10)

where P(ES?,M) denotes the failure probability of the
system when the i-th component is replaced with a
perfectly reliable component. This probability is placed
in the denominator of (10) so that a higher value of
RRW indicates higher importance of the corresponding
component. For the probability in the denominator, one
needs to solve another LP problem formulated for the
system with the i-th component replaced with a
perfectly reliable component. This is accomplished by
making changes to the original LP problem. For the
details of these changes and a simpler definition of
RRW IM in the case of statistically independent
component events, see Song(2004).

Boundary Probability
The Boundary Probability(BP) of a component
measures the change in the probability of failure of the



system that is solely due to a change in the state of
the component (Anders 1990).

BP i= P(E Fs)?stem) - P(Egls)tem) (11)

As shown for RAW and RRW, the probabilities
P(E&n) and P(E$D,) can be obtained by solving
LP problems for systems derived from the original

system by removing or replacing component .

Fussell-Vesely Cut Set Importance Measure

The critical cut sets can be identified by measuring
the contributions of the individual cut sets to the
system failure probability. For this purpose, the
Fussell-Vesely Cut Set (FVC) IM for the k-th cut set
is defined as (Fussell 1973)

Wq - P(Q)/P(Esystem) (12)

The probability in the numerator is computed in

terms of the LP solution p :

P(C)=ap (13)

where ag is a row vector whose j—th element is 1 if
the j-th basic MECE event is included in the cut set

Ci., and 0 otherwise.

3.2 Application to Electrical Substation
Systems

As a numerical example, consider the two-transmission
-line substation system described in Song and Der
Kiureghian(2003b) and Figure 2. The failure events of
the i-th equipment item is formulated as F, ={InR -

InA-InS, <0}, where g denotes the capacity of the

item, A4 is the bed-rock peak ground acceleration and

S: denotes a factor representing the local site response.
For the probabilistic information of the random variables,
see Song and Der Kiureghian(2003b). The connectivity
failure of the system is a general system event

composed of 12 components and having 25 minimum

cut sets:

Eyn =EE, YEE YEE, YE,E, Y EE, Y EE, Y EE, YEE, Y
E,E, Y E,E,YEE,, YE,E,E; Y E,E\E, Y E,E,E, Y E,E,E, Y
E2E3E6 YEZEJEB YE4E10EIZ YE6E10E|2 Y EEEIOED YESEIOEII Y
E7EIUEII YEQEIOEII YE1E3EIOE12 YE2E3E10EH (14)

Due to the correlation between the equipment
capacities within the same category and the presence of
a common random variable 4 in the limit-state functions
of all components, significant statistical dependence
between the component failure events is present. Under
the uni-, bi- and tri-component probability constraints,
the upper LP bound is estimated as 0.0942. In the
following, IM's are computed with respect to this
bound.

3¢ . o
3¢

A

(1) DS, ' (4) CB,

8) DB 11)FB
6P, (8) DB, (11) FB,
(3) DS, (10) TB
< 0 3 < Fo—s
@DS, ()CB, (HPI, (DB, (12) FB,

DS: Disconnect Switch, CB: Circuit Breaker, PT: Power Transformer,
DB: Drawout Breaker, TB: Tie Breaker, FB: Feeder Breaker

Fig 2. Two-transmission-line substation system

Simple post-processing of the upper-bound LP
solution yields the vectors p and afV. The FV IM is
obtained by substituting these results together with
the upper bound probability estimate(0.0942) into (7)
with (8). For the probabilities P(E)..) and P(ES ),
a total of 2X12 =24 additional LP problems are
solved according to the rules described in Song(2004).
Substituting these probabilities and the upper bound
LP solution in (9), (10) and (11), the RAW, RRW and
BP IM’s are, respectively, obtained for each component.
Table 1 lists the various IM’s of the components in the
substation system. According to the FV, RRW and BP
measures, the importance ranking of the components is
in the order (CB1,2)—(PT1,2)—(DBL,2)—(DS1,2)—(DS3)
—(FB12,TB). The ranking according to RAW is
(CB1,2, PT1,2, DB1,2)—(DS1,2)—(DS3)—(FB1,2,TB),
which is identical to the order by the other measures,
except that CB, PT and DB have the same order of
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Table 1. Component importance measures
(maximum IM's are highlighted)

I FV; RAW: RRW; BP;
1 (DS1) 0.183 118 111 0.0264
2 (DS2) 0.183 118 111 0.0264
3 (DS3) 0.168 109 106 0.0142
4 (CB1) 0.601 144 157 0.0760
5 (CB2) 0.601 144 157 0.0760
6 (PT1) 0.283 144 118 0.0565
7 (PT2) 0.283 144 118 0.0565
8 (DB1) 0.280 14 115 0.0539
9 (DB2) 0.280 144 115 0.0539
10 (TB) | 612x10" 100 100  390x10°
11 (FB1) | 819x10*" 100 100  520x10°
12 (FB2) | 819x10" 100 100  520x10™

importance. As a result, one can say that the two
circuit breakers (CB1,2) are the most critical com
ponents in the system, followed by the other
equipment items as listed above. To identify the
critical minimum cut sets, the FVC IM is computed by
(12) with (13) using the upper bound LP solution. The
cut sets are sorted in the descending order of FVC and
the first 12 cut sets are listed in Table 2. The joint
failure of the two circuit breakers is the most critical
cut set. The joint failures of the drawout breaker (DB)
and circuit breaker on different lines are ranked next.
It is noteworthy that the top five most critical cut sets
all include at least one circuit breaker. This further
reinforces the importance of these components for the

system.

Table 2. Fussell-Vesely cut set importance measures

Order Cut Set FVG
1 4, 5) 0.463
2 (5, 8 0.200
3 4,9 0.200
4 (5, 6 0.179
5 4,7 0.179
6 6,7 0.155
7 a, 2 0.138
8 8 9 0.138
9 2, 3 4 0.0976
10 1,35 0.0976
11 (7, 8 0.0951
12 6, 9 0.0951
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4. Reliability of Large-Scale Systems
by use of “Super-Components”

Suppose there is only limited computing power and
advanced LP algorithms for large-scale systems such
as the column generation method(Hansen and Jaumard
1996) are not available. In this case, the LP bounds
approach can be applied to large-scale systems by
treating selected subsets of components as “super—
components.” First, using the LP bounds approach, one
computes bounds on the probability of each super-
component as well as bounds on the joint probabilities
of pairs, triples, etc., of the super-components. If there
are individual components that are not included in the
super—components, one must also compute bounds on
the joint probabilities of each such individual component
and all selected super—components. The probability
bounds on the entire system are then computed by LP
in terms of the computed probability bounds on the
super-components and the given information on the
individual components. The LP problems for the failure
event of the system (represented by super-components)
and each super—-component have significantly reduced
number of decision variables. Therefore, in essence,
the large LP problem is decomposed into a number of
smaller LP sub-problems. Of course, some information
in the process of decomposition is lost, as a result of
which the computed LP bounds are usually wider than
the bounds computed if the original large LP problem
is solved. At the cost of a wider probabhility bound, this
approach enables one to solve the reliability problem for
large-scale systems even with limited computing power.

As an example, let us consider again the two-
transmission-line substation system shown in Figure
2. Since the system event is defined by n=12
components, the corresponding LP has 2 = 4096
decision variables. Based on 12 equality constraints for
the uni—component probabilities and 66 equality
constraints for the bi-component probabilities, the
bounds on the system failure probability are estimated
as 0.0436 and 0.146. As shown in (14), the connectivity
failure of the system i1s a general system event

composed of 12 components and having 25 minimum
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cut sets.

As 1llustrated in Figure 3, let us now represent the
assembly of CB, PT and DB in each transmission line
with a super-component, denoted with bracketed
numbers. The new system event Ei.. has only 8
components: 1, 2, 3, [11, [2], 10, 11, and 12. The failure
event of the new system is defined by 9 minimum cut
sets:

E. o = E\E, YEE,E, YE E,EE, YE,E,E,

system

[ YE2E3E10E11 Y
EnEy YELEGE, YELEGE, Y E\E, (15)

The number of the decision variables for the
corresponding LP is significantly reduced to 2°=256
Among 36 equality constraints (8 uni—-component
probabilities and 28 bi-component probabilities) required
for the bi-component bounds, 21 constraints on the
original components, ie, {1, 2, 3, 10, 11, 12}, are
already available. The 15 remaining probabilities are
Py =P(E,YE,YE,), By = P(E;YE, YE,);

v = POEE, Y EE Y EE), Pyy = P(EE, Y E\E, Y E,E,),
sz =P(E,E,YE,E,YE,E,), sz =P(E,E;YE,E, YE,E,),
Py = PUE,E, Y E,E Y E,E,), Py = P(E,E; Y E,E, Y E,E,),
Plom = P(E10E4 YE!0E6 Y EIOEE)’ Pm{z] = P(EIOES YE10E7 YEloEg)v
Pll[l] = P(EHEA YEIIE(v YEHEB)’ Pn[u = P(EIIES YE11E7 YEIIEQ)’
szm = P(EleA YElee YEszs)’ P12[21 = P(Eles YE,E, Y E12E9)v
Puw = PAE.E; Y E;E, Y EsE, Y E,E, YE(E, Y E,E, Y E,E, YEE, Y E,E,)

(16)

The inequality constraints on each of the above
probabilities are available by solving a LP based on
the constraints on the original components. By this
approach, therefore, we solve one LP with 8

components(for the entire system), two LP's with 3

super-comp. [1]

______________________________

: a3 %—«—W~—<—D—>——>
1(DS)) , §4(CB,) j 2D .E LI{FB )

1 6(PT )} |
30350\ Ll ------------- ' 5] 10(TB)

——<¢{1>—

12(FB,)

2(DS,)

super-comp. [2]

Fig 3. A two-transmission-line substation system
and selected super-components

components, 12 LP’s with 4 components, and one LP
with 6 components. The resulting bounds on the
system failure probability are 0.0436 and 0.147. It is
seen that the proposed approach leads to slightly
relaxed bounds computed with several smaller LP
problems (of size equal to or smaller than 2%=256),
instead of one large LP problem (of size 2> =4,096)

When a system has a hierarchical structure consisting
of many typical sub-systems, eg. a fransmission
network with many local substations, one may wish to
estimate the marginal or joint failure probabilities of
the sub—systems as well as the reliability of the entire
system. The proposed method is particularly useful in
such cases, because the probabilities of the sub-systems
represented as super-components are immediately
available from the solution of the intermediate LP
problems. Moreover, the proposed approach simplifies
the derivation of the failure event of a complex system
by decomposing the event, as can be seen by
comparing (14) and (15)-(16). The proposed method
was successfully applied to series and general systems
with a total of 44 components in Song and Der
Kiureghian (2004b).
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