Face recognition rate comparison using Principal Component Analysis in Wavelet compression image

Wavelet 압축 영상에서 PCA를 이용한 얼굴 인식률 비교

  • Published : 2004.09.01

Abstract

In this paper, we constructs face database by using wavelet comparison, and compare face recognition rate by using principle component analysis (Principal Component Analysis : PCA) algorithm. General face recognition method constructs database, and do face recognition by using normalized size. Proposed method changes image of normalized size (92${\times}$112) to 1 step, 2 step, 3 steps to wavelet compression and construct database. Input image did compression by wavelet and a face recognition experiment by PCA algorithm. As well as method that is proposed through an experiment reduces existing face image's information, the processing speed improved. Also, original image of proposed method showed recognition rate about 99.05%, 1 step 99.05%, 2 step 98.93%, 3 steps 98.54%, and showed that is possible to do face recognition constructing face database of large quantity.

본 논문에서는 웨이블릿 압축을 이용하여 얼굴 데이터베이스를 구축하고, 주성분 분석(Principal Component Analysis : PCA) 알고리듬을 이용하여 얼굴 인식률을 비교한다. 일반적인 얼굴인식 방법은 정규화된 크기를 이용하여 데이터베이스를 구축하고, 얼굴 인식을 한다. 제안된 방법은 정규화된 크기(92×112)의 영상을 웨이블릿 압축으로 1단계, 2단계, 3단계로 변환하고 데이터베이스를 구축한다. 입력 영상도 웨이블릿으로 압축하고 PCA 알고리듬으로 얼굴인식 실험을 하였다 실험을 통하여 제안된 방법은 기존 얼굴영상의 정보를 축소할 뿐만 아니라 처리속도도 향상되었다. 또한 제안된 방법은 원본 영상이 99.05%, 1단계 99.05%, 2단계 98.93%, 3단계 98.54% 정도의 인식률을 보였으며, 대량의 얼굴 데이터베이스를 구축하여 얼굴인식을 하는데 가능함을 보였다.

Keywords

References

  1. http://www.jpeg.org/jpeg/index.html
  2. http://www.mpeg.org/MPEG/index.html
  3. ITU-T Recommendation H.261, Video codec for audio visual services at $p{\times}64kb/s$, Mar. 1993
  4. Draft Text of ITU-T Recommendation H.263 Version 2 (H.263+), Video Coding for Low Bit Rate Communication, Jan. 1998
  5. ISO/IEC JTC1/SC29/WG1 N1422, JPEG 2000 Verification Model 5.2, Aug. 1999
  6. ISO/IEC JTC1/SC29/WG11 MPEG98/N2172, MPEG-4 Video VM Ver 11.0, Mar. 1998
  7. M.-H. Yang, D. J. Kriegman, and N. Ahuja, 'Detecting faces in images: A survey,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 34-58, Jan. 2002 https://doi.org/10.1109/34.982883
  8. Z. Sun, G. Bebis, X. Yuan, S. J. Louis, Genetic Feature Subset Selection for Gender Classification. A Comparison Study, Applications of Computer Vision, 2002. (WACV 2002). Proceedings. Sixth IEEE Workshop on, 2002. pp.165-170. Dec 2002 https://doi.org/10.1109/ACV.2002.1182176
  9. F. Samaria and S. Young, HMM based architecture for face identification, Image and Vision Computing, vol. 12, pp. 537-543, 1994 https://doi.org/10.1016/0262-8856(94)90007-8
  10. Chi, D., Ngan, K.N.: Face Segmentaion Using Skin-Color map in Videophone Applications, IEEE Trans. Circuits and systems for video technology, June,1999, 9, (4), pp. 551-564 https://doi.org/10.1109/76.767122
  11. C. Gonzalez, E. Woods, Digital Image Processing Second Edition, Prentice Hall, 2001
  12. ISO/IEC CD15444-1, JPEG2000 Image Coding System, ver 1.0, Dec. 1999
  13. T. Gerstner and M. Rumpf. Multiresolutional Parallel Isosurface Extraction based on Tetrahedral Bisection. In M. Chen, A. Kaufman, and R. Yagel, editors, Volume Graphics, pp. 267-278. Springer, 2000
  14. H. Rowley, S. Baluia and T. Kanade, Neural Network-Based Face Detection, IEEE Trans. Patt. Anal. Machine Intell., vol. 20, no. 1, pp. 203-208, 1998 https://doi.org/10.1109/34.655647
  15. C. Nakajima, M. Pontil, T. Poggio, People recognition and pose estimation in image sequences, Neural Networks, 2000. IJCNN 2000, Vol. 4, pp. 189-194, 24-27 July 2000 https://doi.org/10.1109/IJCNN.2000.860771
  16. Y. Hongxun, L. Mingbao, Z. Lizhuang, Eigen features technique and its application, Signal Processing Proceedings, 2000. WCCC-ICSP 2000, vol. 2, pp. 1153-1158, 21-25 Aug. 2000 https://doi.org/10.1109/ICOSP.2000.891747
  17. B.A, McLindin, Baselining illumination variables for improved facial recognition system performance, Video/Image Processing and Multimedia Communications, 2003. 4th EURASIP Conference, Vol. 1, pp. 417-422, 2-5 July 2003 https://doi.org/10.1109/VIPMC.2003.1220497
  18. Y. Zhong, J. A.K., D. Jolly, M.-P, Object tracking using deformable templates, Pattern Analysis and Machine Intelligence, IEEE Transactions, Vol. 22, no. 5, pp. 544-549, May. 2000 https://doi.org/10.1109/34.857008
  19. L. Chengjun, H. Wechsler, Independent component analysis of Gabor features for face recognition, Neural Networks, IEEE Transactions. vol. 14, no. 4, pp. 919-928, July 2003 https://doi.org/10.1109/TNN.2003.813829
  20. R.S. Feris, R.M. Cesar, Tracking Facial Features Using Gabor Wavelet Networks, Proc. 13th Brazilian Symposium on Computer Graphics and Image Processing, pp. 22-27, 2000 https://doi.org/10.1109/SIBGRA.2000.883889
  21. L. Zhi-fang, Y. Zhi-sheng, A.K. Jain, W. Yun-qiong, Face detection and facial feature extraction in color image, Computational Intelligence and Multimedia Applications, 2003. ICCIMA 2003. Proceedings. Fifth International Conference, pp. 126-130, 27-30 Sept. 2003
  22. M. Rizon, T. Kawaguchi, Automatic eye detection using intensity and edge information, TENCON 2000. Proceedings, vol. 2, pp. 415-420, 24-27 Sept. 2000 https://doi.org/10.1109/TENCON.2000.888773