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THE SPECTRAL GEOMETRY OF
EINSTEIN MANIFOLDS WITH BOUNDARY

JEONGHYEONG PARK

ABSTRACT. Let (M, g) be a compact m dimensional Einstein man-
ifold with smooth boundary. Let A, s be the realization of the p
form valued Laplacian with a suitable boundary condition B. Let
Spec{A, g) be the spectrum where each eigenvalue is repeated ac-
cording to multiplicity. We show that certain geometric properties
of the boundary may be spectrally characterized in terms of this
data where we fix the Einstein constant.

1. Introduction

Let A, be the Laplace-Beltrami operator acting on the space of
smooth p forms over a compact m dimensional Riemannian manifold M
with smooth boundary. If the boundary is non-empty, then we impose
boundary conditions defined by a suitably chosen operator B to define
the realization A, 3. Let V be the Levi-Civita connection of M and let
em be the inward unit normal vector field on the boundary. Then, for
example, Dirichlet and Neumann boundary conditions are defined by
the corresponding Dirichlet and Neumann boundary operators:

Bp¢:= ¢lapy and By¢:=V,dlay for ¢ € C(APM).

In addition to the boundary conditions defined by these operators,
there are also boundary conditions arising from index theory. Near the
boundary, we decompose a differential form

¢ =3 drdy’ + 3, ¢sdz™ A dy’
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into tangential and normal components. Absolute boundary conditions
are then defined by the operator

Bad = {3, 0% ¢rdy’ Hom @ {5 wsdy’ Hou -

Dually, we may use the Hodge x operator to define the relative boundary
operator by setting:

B¢ =By, *¢.

In previous work [4], we extended a result of Patodi [3] from the
context of closed Riemannian manifolds to the context of compact Rie-
mannian manifolds with boundary. As we were interested in determining
if the Einstein condition was spectrally determined, we worked in the
context of manifolds of constant scalar curvature to show:

THEOREM 1.1. Let (M;, g;) be compact Riemannian manifolds with
smooth boundaries and constant scalar curvatures 1; for « = 1,2. Let
B define either Dirichlet or Neumann boundary conditions. Assume
Spec(Ap g)(M1) = Spec(Apg)(My) for p = 0,1,2. Then if (M1, ¢1) is
Einstein, then (Ms, g2) is Einstein and 1p = 3.

In this paper, instead of studying the geometry of the interior, we turn
our attention to the geometry of the boundary. Motivated by Theorem
1.1, we shall assume henceforth that the manifolds under consideration
are Einstein and we shall fix the Einstein constant, or, equivalently, the
scalar curvature 7.

We recall some basic definitions. Let indices ¢, j range from 1 to m
and index a local orthonormal frame {e;} for the tangent bundle of M.
Near the boundary, we further normalize the frame and assume that e,
is the inward unit geodesic normal vector field. Let indices a,b range
from 1 to m — 1 and index the induced local orthonormal frame {e,} for
the tangent bundle of the boundary.

We adopt the Einstein convention and sum over repeated indices.
Let L be the second fundamental form and let R;jz; be the Riemann
curvature tensor. The normalized mean curvature k, the Ricci tensor p,
and the scalar curvature T are then given by:

K= Lgq, pij:= Rigrj, and 7:=py.

Since M is Einstein, p = Ag where X is the Einstein constant. This
implies that 7 = mA. Thus fixing the Einstein constant is equivalent to
fixing the scalar curvature.
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DEFINITION 1.2. We say that the boundary of (M, g) is:

1. totally geodesic if the second fundamental form vanishes identically.
Equivalently, this means that if a geodesic in M is tangent to the
boundary at a single point, then the geodesic stays in OM.

2. minimal if the normalized mean curvature vanishes identically.
Equivalently, this means that the volume of the boundary is in-
finitesimally stationary.

3. totally umbillic if at each point of the boundary, the second fun-
damental form has only one eigenvalue; the eigenvalue in question
is allowed to vary with the point of the boundary.

4. strongly totally umbillic if the eigenvalue in (3) is independent of
the boundary point chosen.

We can now state the main results of this paper. We first consider
both Dirichlet and Neumann boundary conditions:

THEOREM 1.3. For i = 1,2, let (M;, g;) be compact Einstein mani-
folds with smooth boundaries. Assume that 7 = 7 and that
Spec(Qo,np, ) (M1) = Spec(Aopy,)(M2), and
where Bp and By define Dirichlet and Neumann boundary conditions,
respectively. Then:

1. If OM, is totally geodesic, then OM> is totally geodesic.

2. If OM, is minimal, then OM> is minimal.

3. If OM; is totally umbillic, then OM3 is totally umbillic.

4. If OM; is strongly totally umbillic, then OMs is strongly totally
umbillic.

In the previous Theorem, we studied two different boundary condi-
tions for the operator Ag. In the next Theorem, we study two different
operators, Ag and Aj, and impose either relative or absolute boundary
conditions.

THEOREM 1.4. For i = 1,2, let (M;, g;) be compact Einstein mani-
folds with smooth boundaries. Assume that ™ = 19 and that

Spec(Ag B)(M1) = Spec(Aog)(M2), and
Spec(A1,8)(M1) = Spec(A1,8)(Mz)
where B denotes either relative or absolute boundary conditions. Then:

1. If OM; is totally geodesic, then OM> is totally geodesic.
2. If OM; is minimal, then OMy is minimal.
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3. If OM; is totally umbillic, then OM> is totally umbillic.
4. If OM, is strongly totally umbillic, then OM, is strongly totally
umbillic.

Here is a brief outline to the remainder of this paper. In Section 2, we
review some facts concerning boundary geometry which we shall need.
In Section 3, we recall some previous results concerning the heat trace
asymptotics. In Section 4, we use these results to complete the proof of
Theorems 1.3 and 1.4.

2. The geometry of the boundary

Central to our proof of Theorems 1.3 and 1.4 is the following integral
characterization of certain geometric properties. Let dy denote the Rie-
mannian measure on the boundary and let dxr denote the Riemannian
measure on the interior. To simplify the notation, let

fIM]) = [, f(z)dz and f[OM] =[5, f(
where f is a scalar function.
THEOREM 2.1. Let M be a compact m dimensional Riemannian man-

ifold with smooth boundary 8M .
1. OM is totally geodesic if and only if LgpLap[0M] = 0.
2. OM is minimal if and only if LyqLpp[0M] = 0.
3. OM is totally umbillic if and only if
{(m - 1)LabLab - LaaLbb}[aM] = 0.
4. OM is strongly totally umbilli¢ if and only if there exists a constant
1t 50 that {LapLap — 2uLaq + p2(m — 1)}0M] = 0.

Proof. The first two assertions are immediate. To prove Assertion (3),
we let {k1(y), ..., km—1(y)} be the eigenvalues of the second fundamental
form at a point y of the boundary. Then the second fundamental form
is umbillic at y if and only if k;(y) = -+ = km-1(y) or equivalently if

0=>;(ki— Kki)?.
Assertion (3) now follows since we have that
> ki(9)* = LabLav(y),
2 ki(Y)k;(y) = LaaLen(y), and
0 < 3ics (ki) = 55 (1)* = (m — 1) LapLab(y) — LaaLon(y) -
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Finally, to prove assertion (4), we note that the second fundamental
form is p times the identity at a point y of the boundary if and only if

0= IL - #id |2 = Lab(y)Lab(y) - 2NLaa(y) + (m - 1)/'L2 .

Since |L — pid |? is non-negative, Assertion (4) now holds. O

3. Heat trace asymptotics

To deal with Dirichlet, Neumann, and absolute boundary conditions
in a common framework, it is useful to introduce the more general notion
of mized boundary conditions. Let x be a self-adjoint endomorphism of
AP(M)|anr so that x2 = id. Let IIy be orthonormal projection on the
+1 eigenspaces of x. Let S be an auxiliary endomorphism of rangeIl..
The mixed boundary operator B, s is then defined by

By,s¢ = {ILi(¢m + S¢)}Hom ® {II-¢}on -
EXAMPLE 3.1. Let B =B, s.

1. If we take x = —id, then B defines Dirichlet boundary conditions.

2. If we take x = id, then B defines Neumann boundary conditions.

3. Let ext(e;) denote left exterior multiplication by the covector e;
and let int(e;) be the dual operation, left interior multiplication
by the covector e;. Let IL, be projection on A(OM), let II_ be
projection on A(OM)L, and let

S = —I14 ext(egy) int(ep) LapIly .

Then B, s defines absolute boundary conditions, see, for example,
the discussion in [2]. We note for future reference that

Xa = 2Lgp{ext(ep) int(em) + ext(en) int(ep)} .

Let B = By,s and let e tAp8 be the fundamental solution of the
heat equation. The pseudo-differential calculus established by Seeley
[5, 6] shows operator is of trace class and as ¢t | 0 there is a complete
asymptotic expansion with locally computable coefficients in the form:

Trpe €008 ~ 3550 7™ 2an (A p) -

Let *’ denote multiple covariant differentiation. The Weitzenbock
formula permits us to express

Apw = —(wikk + Epw)
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where Ej, is a suitably chosen expression in the curvature tensor. For
example, we have that

(31) E() =0 and El(ei) = —pPij€j -

The following result is a special case of a more general result established
by Branson and Gilkey [1].

THEOREM 3.2. Let M be a compact Riemannian manifold which
has a smooth boundary OM. Let B = By s define mixed boundary
conditions on AP(M).

1. ag(App) = (4m)”
2. a1(Ayp,p) = (4m)~m=D/2 Te{x}OM].
3. ag( p,B) (477)_m/21{1‘r{6E + 7}M] + Tr{2L,, + 128} [0M]}.
4. a3(Dpg) = (4m)~(M=D/2 L Te{96x B, + 16XT — 8XPmm
+[18M04 — 7I1_]Laq Ly + 2114 + 1011 ]LabLab +96SL,q
+19252 — 12x.0X.0 }[OM].

™/2 Te{id}[M].

4. Proof of Theorems 1.3 and 1.4

Let B denote Dirichlet, Neumann, absolute or relative boundary con-
ditions. The heat trace asymptotics a,(A, ) are spectral invariants.
Consequently by Theorem 3.2,

{vol(M), vol(OM)}

are spectral invariants. We have fixed the Einstein constant and set the
scalar curvature 7 = ¢. Thus

(M), 7[OM], and  pmm[OM]
are spectral invariants as well. The formula for as then shows that
Lyo[0M]

is spectrally determined. In light of Theorem 2.1, to complete the proof
of Theorems 1.3 and 1.4 it suffices to show

(4.1) LaaLbb [3M] and LabLab [8M]

are spectrally determined by {A¢s,, M08y}, by {Aos,,A1s,}, or by
{Ao5,,A1B,}-

We shall supress the coefficients of certain invariants in what follows
since they define invariants which are already known to be spectrally
determined; we denote such coefficients by a generic symbol x. We
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use the discussion in Example 3.1, the formulae in Equation 3.1, and
Theorem 3.2 to compute:

ag (AO,BD) = (47T)(1_m)/23_812{*7— + %pmm — TLaaLpp
+10L g5 Loy }[OM],

a3(Aogy) = (4m)37™/2 L Lar 4 kpmm + 13Lag Lip
+2LabLab}[8M] .

-7 10
13 2

is non-singular, the invariants given in Equation (4.1) are spectral in-
variants as desired; Theorem 1.3 now follows.

To establish Theorem 1.4, we must perform similar computations for
absolute and for relative boundary conditions.

Absolute boundary conditions are pure Neumann boundary condi-
tions on 0 forms. By Example 3.1,

Traip {13104 — TH_]LooLtp} = (13m — 20)LaaLes,

Since the coefficient matrix

Traar {204 + 101 _|Lap Lo} = (2m + 8) Lap Lap,
Trp1p{96SLgs} = —96Lgq Ly,
Trp1,{1925%} = 192Lap Lo,
TrAlM{—IQX:aX:a} = —96Lqp Ly .

It is now an easy matter to use Theorem 3.2 to see that

a3(Aos,) = (4m) "™/ L Lsr 4 5prm + 13LaaLon
+2L gy Loy [0 M],

a3(A15,) = (4m) ™2l Lser 4 pmm + (13m — 116) Loa Ly
+(2m + 104) Loy Lap }[OM] .

The desired result for absolute boundary conditions now follows as the
determinant of the coefficient matrix

13 2
13m — 116 2m + 104

is 1584 which is different from zero.

Relative boundary conditions are Dirichlet boundary conditions on 0
forms. We use duality to see relative boundary conditions on 1 forms
have the same spectral asymptotics as absolute boundary conditions on
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m — 1 forms. On m — 1 forms, we compute:
Tram-1p{[1304 — 7H—]LaaLbb} = (=Tm + 20)Lyo L,

Trpm-1p7{[2104 + 10H—]LabLab} = (10m — 8) Loy Las,
Tr gm1 37 {968 Lag} = —96LaaLib,
Trpom-13,{1925%} = 192L .o Ly,
TrAm—lM{“IZX:aX:a} = —96LapLay -

It is now an easy matter to use Theorem 3.2 to see that
a3(Do,z,) = (4m) ™™/ L {xT + %pmm — TLaa Ly
+10LabLab} [BM] ,
a3(A1,5,) = (4m) ™2 g (%7 + %pmm + (—Tm + 116) Laa Lop
+(10m + 104) Lygp Loy }HOM] .

The coefficient matrix

=7 10
—7m + 116 10m — 104

has determinant —432 which again is different from zero. ]
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