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A NOTE ON THE HYERS-ULAM-RASSIAS
STABILITY OF A QUADRATIC EQUATION

JIE-HyuNnGg KANG, CHANG-JU LEE AND YANG-H1 LEE

ABSTRACT. In this paper we prove the Hyers-Ulam-Rassias sta-
bility by considering the cases that the approximate remainder ¢
is defined by f(z *y) + fz xy~ 1) — 2f(z) — 2f(y) = ¢(z,y),
flaxy*2)+ f(@)+ f(y)+F(2)— flary) = f(yxz)— f(zxx) = o(2, 9, 2),
where (G, %) is a group, X is a real or complex Hausdorff topological
vector space, and f is a function from G into X.

1. Introduction

In 1940, S. M. Ulam [31] raised the following question: Under what
conditions does there exist an additive mapping near an approximately
additive mapping?

In 1941, D. H. Hyers [5] proved that if f : V — X is a mapping
satisfying

[f(z+y)— flz) - fFyll <6

for all z,y € V, where V and X are Banach spaces and 6 is a given

positive number, then there exists a unique additive mapping T : V — X
such that

If(z) =Tl <6

forallz e V.

Th. M. Rassias [21] gave a generalization of the Hyers’ result in the
following way:
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THEOREM 1.1. Let f : V — X be a mapping such that f(tx) is
continuous in t for each fixed x. Assume that there exist 8 > 0 and
p < 1 such that

If(z+y) = fx) = fF@)I < Olizll” + ll9*)

for all z,y € V(for all z,y € V \ {0} if p < 0). Then there exists a
unique linear mapping T : V — X such that

26
2 - 27|

IT(z) - ()]l <

ll][?

forallz € V (for allz € V \ {0} if p < 0).

Th. M. Rassias [27] during the 27th International Symposium on
Functional Equations asked the question whether such a theorem can
also be proved for p > 1. Z. Gajda [3] following the same approach as
in Th. M. Rassias [21], gave an affirmative solution to Rassias’ question
for p > 1.

However, it was showed that a similar result for the case p = 1 does
not hold (see [3, 28]). Recently, P. Gdvruta [4] also obtained a further
generalization of the Hyers-Rassias theorem (see also [6-11, 16, 19, 20,
22-24]).

Lee and Jun [17, 18] also obtained the Hyers-Ulam-Rassias stability
of the Pexider equation of f(z + y) = g(z) + h{y) (see also [14]):

In 1983, the stability theorem for the quadratic functional equation

flz+y)+ flz—y)—2f(z) —2f(y) =0

was proved F. Skof {30] for the function f :V — X. In 1984, P. W.
Cholewa [1] extended the Skof’s result to the case where V is an Abelian
group G. In 1992, S. Czerwik [2| gave a generalization of the Skof-
Cholewa’s result in the following way:

THEOREM 1.2. Let p # 2, 8 > 0 be real numbers. Suppose that the
function f : V — X satisfies

If (2 +y)+ flz—y) - 2f(x) = 2f ()] < (|| + llyl®)-

Then there exists exactly one quadratic function g : V — X such that

() — g(@)|| < c+kb)jz||P



A note on the Hyers-Ulam-Rassias stability 543

for all z in V if p > 0 and for all z € V '\ {0} if p < 0, where: when
p<2c= H—f%))—”,k = 2 and g is given by (2.4) with g instead of g.
Whenp > 2,c=0, k= 325 and g(z) = limy, .o 4" f(27"2) for all z in
V. Also, if the mapping t — f(tz) from R to X is continuous for each
fixed x in V, then g(tx) = tg(x) for all t in R.

Since then, the stability problem of the quadratic equation have been
extensively investigated by a number of mathematician ([25, 26, 29]). In
2001, Jun and Lee [13] proved the stability of the Pexiderized quadratic
inequalities:

[f(z+y)+ flz—y) - 29(x)-29(y)|| < o(z,v),

Throughout this paper, we denote by G a group and by X a real or
complex Hausdorff topological space. By N we denote the set of positive
integers. e stands for the unit of G, while it is 0 instead of e if G is an
abelian group. W. Jian [12] obtained the Hyers-Ulam-Rassias stability
theory by considering the cases where the approximate remainder ¢ is
defined by

flexy)— flx)— fly) =0 (Vz,y € G),
flexy) —glx) —h(y) =0 (Vz,y € G),
2f((wxy)'/?) = f(&) — fly) =0 (Va,y € G),

where f, g, h are functions from G into X. In this paper, using the di-
rect method, we obtain some generalizations of the Hyers-Ulam-Rassias
stability of the following two kinds of the functional equations.

(1.1)  flz*xy)+ flzxy ) —2f(x) —2f(y) =0 for all z,y € G,

(1.9) Flaxyx2)+ fl@)+ fly) + f(2)
' ~ flzxy)— flyx2)— f(zx2) =0 forall z,y € G.

A function Q : G — X is called quadratic on G if Q(z*y) +Q(z*xy~1) —
2Q(z) — 2Q(y) = 0 and a function A : G — X is called additive on G if
Az *xy) — A(z) — A(y) = 0.
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2. The stability of the functional equation (1.1).

In this section, we prove the stability of the functional equation (1.1).

THEOREM 2.1. Let ¢ : G\{e}xG\{e} — X be a mapping satisfying
the conditions

2" 2"
(T.1) lim M._) =0

n—00 4n

for all z,y € G\{e} and

n—oo

(T.2) p(z*,2?) == lim z chp(m’ 2" 2k) eX
k=0

for all z € G\{e} and for any fixed i,j = 0,1,2,3,---. Suppose that the
function f : G — X satisfies

(2.1) flexy)+ flxxy™) ~2f(2) - 2f(y) = o(z,y)

for all z,y € G\{e} and

(2:2) flaxy)®) = f& *¢*")

for all z,y € G and n € N. Then the limit Q(z) = lim,_o f(xQn)/4”
exists for all x € G, and Q is quadratic. In this case, the equation

f(z) = f(e)/3 = Q(z) — ¢(z, z)
holds for all z € G.

Proof. Replacing y by z in (2.1), we easily obtain

f(e*) - f(e)/3 _ ¢(z,2)
4 4

f(=) - fle)/3=

for all z € G\{e}. Replacing z by 22" and dividing by 4" in the above
equation, we have

S EV(CT N G Bt (CTL N EE
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for all z € G\{e}. From the above equation, we obtain

f@) - feys =T )OS §n 1 o
k=0

n+1 k+1
4 4

for all € G\{e}. From (2.1), we can take the limit in the above

+1
equation as n — o0, and lim,, o Mﬁ%@ﬁ € X exists for all
x € G\{e} for all n € N. In this case, the equation

f@) — fe)3 = tim L& )=JOB 0 o

n—00 4qn+l

holds for all x € G. Let

Q@) = 1im 1&)

n—oo 4N

for all z € G. Replacing by 22" and dividing by 4™ in (2.1), we have

FE e y™)  fE g™ 26 207 el y?)

4n 4n qn 4n 4n ’

for all z,y € G\{e} and for all n € N. Taking the limit in the above
equation as n — 00, we obtaln

Qz+y) +Qzxy™") —2Q(z) —2Q(y) = 0
for all z,y € G\{e}. Since Q(e) = 0, we easily obtain
Qe *y) + Qla+y™) - 20(x) — 2Q(y) = 0
for all z,y € G. O

THEOREM 2.2. Let ¢ : G x G — X be a mapping satisfying the
conditions (T.1) and (T.2) for all z,y € G. Suppose that the function
f G — X satisfies

flexy) + flzxy™") —2f(z) - 2f(y) = ¢(z,y) (Vz,y € q),

and the condition (2.2) in Theorem 2.1 for all z,y € G.
Then the limit Q(x) = lim,_.o, f(2?")/4" exists for any € G and
Q) is quadratic. In this case, the equation

f@>=Q@ﬁ—¢@aﬁ—f%?ﬁ

holds for all z € G.
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3. The stability of the functional equation (1.2).

In this section, we prove the stability of the functional equation (1.2).

THEOREM 3.1. Let G be a groupoid. Let ¢ : G\ {e} x G\ {e} x G\
{e} — X be a mapping satisfying the conditions

(3.1) lim P&V )

for all z,y,z € G\{e} and

n

(3.2) @zt 27, 2") == lim Z 4k1+1 o(x* 2k j'2k,ml'2k) €eX

for all x € G\{e} and for any fixed i,j,l = 0,1,2,3,---. Suppose that
the function f : G — X satisfies

(3.3)

flmxyxz)+ f(@)+fy)+ f(2) = flaxy) - flyxz)— flzxx) = o(2,y, 2)

for all z,y,z € G and
(3.4) Flexyx2)"") = f@® «y* 527")

for all z,y,z € G and n € N. Then the limit

Q(ﬂ?) — lim ( 2""'1) — 2f( )

n—oo 4qn

exists for all x € G and Q satisfies generalized quadratic equation (1.2).
In this case, the equation

Qx) = [f(z?) — 2/ ()] + ¢(2?, z,z) + 2¢(x, 7, )
holds for all z € G \ {e}.
Proof. Replacing z,y, z by z,z,z in (3.3), we have
(3.5) 7(&®) - 3f(2?) + 31 (2) = 9(z,3,)

for all z € G\ {e}. Replacing z,y, z by 22, z,z in (3.3) respectively, we
have

(3.6) fa*) +2f(z) - 2f(z°) = p(a*, 2, 2)
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for all z € G'\ {e}. From (3.5) and (3.6), we obtain

(3.7) f(x*) — 6f(2?) + 8f(z) = p(2?,z, ) + 2¢(x, z, )
for all z € G\ {e}. From (3.7), we know that
fzt) —2f(2?)

9 1
D (pa) 2] = 4

4[@(:52, z,z) + 2¢(z, z, x)|.

By above equation, we obtain
f(@Y —2f (22"
&) () - 2f )
2k——1 2k—1

B i w(xzk’x2k~lyx2k—1) + 2@(_’1]2]6717[[; ,m )
= 4k

for all z € G\ {e}. By the above equation and (3.2), we can define
Q:G— X by

Q@)= lim ! (@) —2f(@*)

n—0o 4qn
= [f(@®) = 2f(2)] + &(a*, 2, 2) + 2¢(, 2, 2)
for all z € G. From (3.3), we easily obtain

n n4+1 n g " ™ n ™
P ey *z2+1)_2f($2 *y° *22)+f(w2+1)—2f(m2)
An 4n

I =20 | FET) — 24

4n 4n
n+1
f= Y2 )~ 2f (@ «y?)
4n
* z2n+1) — 2f(y2n * zzn)
4n
f(z2n+1 % wznﬂ) —2f(2%" x 22")
4n

2n+1 2n+1 2n+1)

— SO(:I: Y y % +2w(x2”’y2”7227L)

4n+1 An

2n+1

2n+l

fly

for all z,y, z € G\ {e}. Taking the limit in the above equation as n — oo,
we obtain

Qzxyx2)+Q(z) +Qy) + Q2) — Qzxy) — Qlyx 2) —Q(zxz) =0

for all z,y,z € G\ {e}. Since Q(e) = 0, Q satisfies the equation (1.2)
for all z € G. g
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THEOREM 3.2. Let G be a groupoid and let E be a Banach space.
Let ¢ : G\ {e} x G\ {e} x G\ {e} — R be a mapping satisfying the
conditions (3.1) and (3.2) for all z,y,z € G. Suppose that the function
f: G — F satisfies
(3.8)

If (zxy*2)+f(2)+f(y)+ f(2) = f(zxy) — f(y*2) = f(zx2)|| = o(z, 9, 2)

for all z,y,z € G\ {e} and condition (3.4) in Theorem 3.1. Then the
limit Q(z) = lim,,_, f(x2")/4™ exists for any ¢ € G and Q satisfies the
generalized quadratic equation (1.2). In this case, the inequality

Q) - 31£6) — 20 @) < 58(e% 2,2) + $(2,2,2)

holds for all z € G\ {e}.
Proof. Replacing z,y, z by z,z,z in (3.8), we have

(3.9) 1F (=) = 3f(2?) + 3f(2)|| = ¢(z,,2)

for all x € G\ {e}. Replacing z,y,2 by z2,z,z in (3.8), we have

1f(=*) +2f () - 2f(2®)]| = p(?, 2, )
for all z € G\ {e}. From (3.9) and the above equation, we know that

If (@) — 6£(2?) + 8f(2)]| < (2?2, 2) + 2¢(z, 2, )

for all z € G\ {e}. From the above equation, we know that

Ilf (=) = 4f(@*)] - 2[f(2?) - 4f (@)]|| < p(a?, 2, 2) + 2¢(z, 2, 2)

for all x € G\ {e}. From above equation, we know that
I/@) = 47— 2"[f () - 4£ ()]l

< Z 2n_k[(,0(.’132k 7 xzk—l , m2k—1) n 2¢(x2k_1 , x2k—1 , x2k—1 )]
k=1

for all z € G\ {e}. Dividing by 4™ in the above equation, we obtain

| F@) —4f=")  f(@®) - 4f (@) |
4n 2n

- n (P(:L'2k,172k_1,x2k_1)+2(,0(l‘2k_1,£(:2k_1,502k‘1) 1
- Z 4k: 2n—k:
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for all z € G\ {e}. Let

2k—1

2?2
vie) = Jim 3

for all z € G\ {e}. Then
P(z)
1 2k—1

n k k— k—1 k-1 k—1
— Lm 4,0(1'2 ’x2 T 2 2 2
’I’L—)OOZ
k=1

Y+ 2p(x* ,z* 2zt ) 1
4k 2n—k

n n—1 -1 n—1 n—1 —1
B A A RS T CA A

n-—00 4n

n—1 k k—1 k—1
1 . o(z? 2% 2% )+ 20(2% 2%z
todm )

for all z € G\ {e}. Hence we know that ¢(z) = 0 for all z € G\ {e}.
Taking the limit in (3.10) as n — co, we obtain

2n,+1 N 9m
(3.11) lim 1 )4n @)
for all x € G\ {e¢}. By Theorem 3.1, the limit
n+1 n
(3.12) i £ ) —2f(%)

N 00 4qn

exists for all z € G \ {e} and the inequality

|t L@ 206

n—00 4qn

= [f(#*) = 2f (@)]]| < $(=?, z,7) + 20(z, 7, 2)

holds for all z € G. By (3.11) and (3.12), the limit

0() = 1m L&)

n—00 4n
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exists for all x € G and the inequality

Q@) — 5[a) — 24|

e FE@) 1

= Il lim =5 = Slf(=*) — 2 (@)

f(x2n+1) — 4f(x2n) “
4qn

b 1) i 76T =206

n—oo 4n

IN

Lo
ol M,

- [f@®) = 2f @]

1
S 5()5(3:27 z, l‘) + (,5(:15, z, £L')
holds for all z € G. From (3.8), we easily obtain
@ ¥ 22" f@®) | FT)

I e Tt T
LI ) ) JE )
A an an 4n
I )

4n

for all 2, y, z € G\{e}. Taking the limit in the above equation as n — oo,
we obtain

Qzxyx*2)+Qx) +Qy) + Q2) —Qz*y) —Qy*2) —Q(z*z) =0
for all z,y,2z € G\ {e}. Since Q(e) = 0, we easily obtain

Qlz*yx*2)+Qx) +Qy) + Q2) — Qzxy) —Qy*2) —Q(zxz) =0
for all z,y,z € G. O

THEOREM 3.3. Let G be a group and let X be a topological vector
space. Let ¢ : G\ {e} x G\ {e} x G\ {e} — X be a mapping satisfying
the conditions (3.1) and (3.2) for all z,y,z € G \ {e}. Suppose that the
function f : G — X satisfies the equation (3.3) and the condition (3.4) in
Theorem 3.1. Then the limit Q(z) = lim,_,oo[f(z?") + f(z=2")]/(2-4")
exists for all x € G and @) is quadratic. In this case, the equation
2, Bz - pla,atz )

gf(e) + 5

Q@) = 51@) + f™)] -
holds for all z € G\ {e}.
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Proof. Let fi(z) = 3[f(z) + f(z™!)]. From the equation (3.3), we
easily obtain

filzxyx2) + fi(z) + fr(y) + fi(z) — filz xy) — fr(y * 2)
(3.13) — fi(z xz)

1 1 -1 -
= §[¢(m,y,z)—+—cp(z 17y 17$ 1)]

for all z,y, 2 € G\ {e} and we know that the equations fi(x) = f1(z ™),
fi(e) = f(e) for all x € G from the definition of f;. Replacing z by z~*
in (3.13), we have

(3.14)

NExy)+ Alesy ™) —2fi(x) — frly) — L@ xyxz™') + f(e)
~ Sl e ™) + ol y a7

for all z,y € G\ {e}.
Replacing y by z in (3.14), we have

(315) file?) — 4fi(a) + 2/ () = —3lp(mma) + (o, )

for all z € G\ {e}.
Dividing by 4 in (3.15), we have

(3.16)

2 1 2, 2 1 -1 -1 -1
fl(x)_gf(e)_Z[fl(x )—gf(e)]=§[g0(x,x,x )+(,O(33,£C y L )]
for all z € G \ {e}. Replacing z by 2" and dividing by 4™ in (3.16), we

have ; -
fild®) —3fle) A )—3f(e)
4n o 4n+1
p(a® 2" a™?") + (@, 27 27"
- 2 4+l

for all n € N and = € G\ {e}. Induction argument implies

2"y _ 2
fl(x)_gf(e)—fl(x )4n 5/(e)
> oz, 22" a2 + (2?22 22
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foralln € N and =z € G\ {e}. Taking the limit in (3.17) as n — oo, we
get

z2") = 2f(e Az, z,x” 1) + Px,z~ L,z 7t
lim fi(z*) 3f( ) = fi(z) - gf(e) . o(z, z, )+2<P(377 ) )

n—o0 4n

for all z € G\ {e}. Therefore we can define Q : G — X by

Q(z) = lim ———fl(mzn)

n-—00 n

for all z € G. From (3.4), we know that

n n __on k n—k k n—k _nk n—k
AE* xy® xa™) = A(E@®) x 7))+ @)
= (@ *y* %))
(318) = fl (x2k * y2n * x-zk)
for all z,y € G and for all n > k = 0,1,2,3,---. From the above

equation, we know
fi(z® x % « t7?) = fi(zx * y? x 1)

for all z,y € G. Replacing y by ™! x y * = in the above equation, we
have

filexy® 27 = fi(y*")
for all 7,y € G. From (3.14) and the definition of @, we easily get
Qz*y) + Qz *y™") —2Q(z) —2Q(y) = 0
for all 2,y € G \ {e}. Since Q(e) = 0, we have
Qz*y) + Qz xy™) —2Q(z) —2Q(y) =0

for all z,y € G. O
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THEOREM 3.4. Let G be a group and let X be a topological vector
space. Let ¢ : G\ {e} x G\ {e} x G\ {e} — X be a mapping satisfying
the conditions

: Sp(w2"7y2"’z2") —
for all z,y,z € G\{e} and
i j = 1 ok : ok k
(3200 plat ot )= M D | opre(et 2?2 e X
k=0

for all x € G\{e} and for any fixedi,j,l = 0,1,2,3,---. Suppose that the
function f : G — X satisfies the conditions (3.3) and (3.4) in Theorem
3.1. Then the limit T(x) = lim,_,[f(z?") — f(z72")]/2"*! exists for
all x € G and T is additive. In this case, the equation

1 -1 —1

T(@) = 1) - fla)] + 28

,$,$) - @(.’L‘
2

holds for all z € G\ {e}.

Proof. Let fa(z) = [f(z) — f(z7')]. By the condition (3.3), fa
satisfies

felzxy*z) + fa() + f2(y) + f2(2) — falz xy) — faly x 2) — fa(z x @)

(3.21) = Jlel@,5,2) ~ =7y )]

for all z,y,z € G\ {e} and fa(z) = —fo(z™1), f2(e) = 0 for all z € G.
Replacing z,y,z by 71, z,y in (3.21), we have

(322) 2£2(9) - falo )~ falysa™) = Slole™ ) oy~ a7 2)
for all x,y € G \ {e}. Replacing y by z in (3.22), we have
(323) 2f2(56') - f2(l’2) = %[(p(x_l,x,x) - (70(1'_171"_17'7;)]

for all z € G\ {e}.
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Replacing z by 22" and dividing by 2"*! in (3.23), we have
(3.24)

B@) RO Lt o o) @ o )

on on+1 - 2n+2

forallz € G\ {e} and n =0,1,2,---. Replacing = by 2" and dividing
by 2" in (3.24), we have

on+1 n ok ok+1
f2($) _ f2(;;+1 ) — Z fZ(w ) _ f2(x )

2k 2k+1
k=0
n ok k K ok _ok k
_ZQO(:C 291:2 ,.’L’Z)*‘(P(.T 2a$ 27172)
- 9. 9k+1
k=0

for all n € N and = € G\ {e}. Taking the limit in the above equation

as n — 00, we obtain
e 27) Tha,z) - gl e )
n—oo 2N+l 2

for all z € G\ {e}. Let T : G — X be a map defined by
f2(2*")
2n

— hol@) + ¢z

T(z) = lim

n—oo

for all z € G. From (3.22) and the definition of T, we easily obtain
T(xxy)+ Ty~ *2) = 2T(z) = T(z+y) + T(y~" *2) — T(2*) =0

for all z,y € G\ {e}. Replacing y by z * 42 in the above equation, we
have

T(z* *y*) — T(y*) — T(2*) =0
for all z,y € G\ {e}. From (3.4), we know

2 2127 gntl on+l1
n—00 n n—oo an
2n+1
=2 lim w;f—zl = 2T(z *y)

for all z,y € G. From the above equation and T'(e) = 0, we know that
T(xxy) —T(z) —T(y) =0
for all x € G. O

From Theorem 3.3 and Theorem 3.4, we obtain the following theorem.
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THEOREM 3.5. Let G be a group and let X be a topological vector
space. Let ¢ : G\ {e} x G\ {e} x G\ {e} — X be a mapping satisfying
the conditions (3.19) and (3.20) for all x € G\{e}. Suppose that the
function f : G — X satisfies the conditions (3.3) and (3.4) in Theorem
3.1. Then there exist a quadratic function @ : G — X defined by
Q(z) = lim,oo[f(2?") + f(z72")]/(2 - 4™) and an additive function
T : G — X defined by T(x) = lim,_[f(z*") — f(z=2")]/2"* for all
x € G. In this case, the equation

plz,z,27") + gz, 271,277
2
(.’L'_l,ZC, JJ) — @(1‘"17 x_lax)

2

Q@) +T(x) = f@) ~ > 5(e) -

L ¢

holds for all z € G \ {e}.

COROLLARY 3.6. Let G be a group and let X be a topological vector
space. Suppose that the function f : G — X satisfies the equation (1.2)
for all z,y,z € G \ {e} and the condition (3.4) in Theorem 3.1. Then
there exist a quadratic function () : G — X defined by

Qz) :{ [f(z) + f@1)]/2 - 2f(e)/3  for z € G\ {e}

0 for x=e¢e

and an additive function T : G — X defined by T(z) = [f(x)— f(z™1)]/2
for all x € G. In this case
fx)—2f(e)/3 for x € G\ {e}

0 for x =e.

Q) +7(0) = {

Proof. Let v : G\ {e} x G\ {e} x G\ {e} — X be a map defined by
o(x) =0 for all x € G\ {e}. In the proof of Theorem 3.3 and Theorem
3.4, we know that

Q(z) = lim [f(2®") + f(a7))/(2-4™) = [f(z) + f(2™1)])/2 — 2f(e) /3

n—oo

and

T(z) = lim [f(z*") - f(z72")]/(2-2") = [f(z) — f(z~1)]/2

77— 00

for all x € G\ {e}. O
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COROLLARY 3.7. Let G be a group and let X be a topological vector
space. Suppose that the function f : G — X satisfies the equation
(1.2) for all z,y,z € G and the condition (3.4) in Theorem 3.1. Then
there exist a quadratic function Q : G — X defined by Q(z) = [f(z) +
f(z71)]/2 and an additive function T : G — X defined by T(z) =
[f(@)— f(z™1)]/2 for allz € G. In this case, the equation Q(z)+T(zx) =
f(z) holds for all z € G.
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