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THOMSEN CONDITIONS ON WEBS
AND THEIR CORRESPONDING LOOPS

BOKHEE IM AND IN-So0oK OH

ABSTRACT. We introduce certain local Thomsen condition in a 3-
web and prove that it is equivalent to the equation a — (@ — b) =
b in its corresponding loop, where we denote the loop operation
additively for convenience and simplicity, even though the loop is
neither associative nor commutative. Also we interpret such local
Thomsen condition using orthogonality of chains in a web.

1. Introduction

W. Blaschke called systems of curves on surfaces as webs, and sug-
gested to develop a theory of abstract webs in 1928. This task was
carried on firstly by G. Thomsen (cf. [22]), K. Reidemeister (cf. [20])
and later by G. Bol, R. H. Bruck and others (cf. [1, 2, 3]). Each 3-web
can be related to an algebraic structure such as a loop (cf. Theorem
2.1). The loops gained more interest than webs and their theory was
developed. Study of Bol loops and Moufang loops were in the center
among many other loops, while K —loops were introduced most recently
and studied mainly by H. Karzel, A. Kreuzer, H. Kiechle, B. Im, and
their students, though A. Kreuzer proved that K —loops and Bruck loops
are the same (cf. [6, 10, 12, 13, 15, 16, 19]).

If certain configurational theorems named after Thomsen, Reidemeis-
ter, Bol in the web are valid (cf. [20, 21, 22]), then the corresponding loop
have additional properties or turn out to be groups or even commutative
groups. Webs were revisited in [4, 5, 7, 17] and studied related to K-loops
in [8, 9, 11]. Reflections and rotations are newly interpreted in a web’s
point of view in {8, 9]. The closing of web configurations characterizing
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certain classes of webs are expressed elegantly by using these reflections
and rotations in webs. The local Thomsen condition (7,0;4,7) and lo-
cal Reidemeister condition (R, 0, ) have been introduced in a 3-web and
their equivalent conditions are proved in a relation to the corresponding
loops in [9]. However, no figures are included in [9], which makes the
theory uneasy to understand.

In this paper, we show some helpful figures in association with (R, 0, 7)
and (7,0;4,7), and develop another new local Thomsen condition de-
noted by (T,0; k) to obtain Theorem 3.3 as our main result.

2. Some properties of webs and their corresponding loops

Let W = (P,G) be a 3—web, i.e. a nonempty set P of points and a
set G of generators(or lines), where G is a disjoint union of three classes
G; (i = 1,2, 3) such that the following two conditions hold:

W1 For each point z € P and ¢ € {1,2, 3}, there exists exactly one
generator in G; containing x, where we denote such generator by [z];,

W2 Any two generators from distinct classes intersect in exactly
one point, and each generator contains at least two points.

A subset C C P is called an i-chain if for each Y € G; U Gy the
intersection Y N C consists of a single point. Let C; be the set of all -
chains, then G; C C;. To each chain C' € C; there corresponds a reflection
C asin [8, 9]:

C:Pr— Pz — [[=]; NnCl, N [[]% ﬂC]j,
i.e. an involution of the set P fixing exactly the points of C' and inter-
changing the generators of G; and Gy, i.e. C € Aut(P, G; UGy). In [18],
such C is considered only in the case when C € G, and callied the Bol
reflection with axis C. In our general case of C € C;, we call C a (chain)
reflection (of type 1).

The closing of web configurations characterizing certain classes of
webs are expressed elegantly by using reflections in chains or rotations
in a web(cf. [8, 9]).

A web W is called a Reidemeister web if the following Reidemeister
condition RE is valid(cf. [20, 21)):

RE IfacP,bc [a],-, and Cij = [bz]] N [bj]z for i,j € {1,2,3} with
i # 7, then [c12]3 N [c23]1 N [c13]2 # 0.

This Reidemeister condition can be written in the following form using
chain reflections (cf. [8]):
RE' If A,B,C,D € G3 with Fiz(Ao BoC o D|g,) # 0, then
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goéoé’oﬁbl =1idg, .

A web W is called a Thomsen web if the following Thomsen condition
TH is valid (cf. [22]):

TH 1If p, g € P, then [[p]s N [gl2]3 N [[p]2 N [g]s]r N {[pls O [g]1)2 # 0.

The following local Thomsen condition (T',0;1,7) and local Reide-
meister condition (R,0,¢) have been introduced in [9]:

(T, 031i,j) Ifz e [0]; and y € [0];, then [0y N [[z]x N [?J]z]J N {lyleN
[z1;], # 0,

(R,0,i) Let p, g € [0);, pr. = [0xN[ply, g7 = [0];0]glk, P = [pe]iNlgly
and ¢’ = [g;)i O [plx, then [[p]x N [0];], = [[¢']; N [0]&),-

On the other hand, a loop is a group without associativity, hence each
right inverse and left inverse need not be the same, though it contains the
two-sided identity. In this paper we prefer to denote the loop operation
additively as + for convenience and simplicity, though the operation is
neither commutative nor associative. So our loop is a groupoid (E, +)
such that the equation z 4y = z has the unique solution in E whenever
two of the three elements z, y, z are given. In other words, our loop
is a quasigroup with the identity 0. For each a € E we define two
permutations a™ and Ta on a loop (E,+) by a®(z) = a+z and Ta(z) =

[0]1

FiGure 1. (7,0;1,2)
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FIGURE 2. (R,0,1)

z + a. Then we let —a = (a™)~1(0) and ~ a = (ta)~1(0) so that —a is
the right inverse of a and ~ a its left inverse, i.e. ~a+a =a+(—a)=0.
Instead of a+ (—b) we write a —b. Also we consider permutations v on
E such that v(z) = —z, and §,p = ((a + b)7) ! oat o bt so that the
equation a + (b+ ¢) = (a +b) + 0, 5(c) holds in a loop.

A loop (E, +) is a Bol-loop if the identity a* obT ca™ = (a+ (b+a))™
holds for all a,b € E. And a Bol-loop is a Bruck-loop if the automorphic
inverse property v € Aut(E,+) holds and a Moufang-loop if v is an
antiautomorphism. On the other hand, a loop (F,+) was called a K-
loop if 5a,b € AUt(E,+)7 5a,—a = 1d, 5a,b = 5a,b+a and v € AU't(E7 +)
hold. And the theory on a K— loop was developed independently in
the beginning, even though A. Kreuzer proved that K —loops and Bruck
loops are equivalent later on (cf. [13, 15, 16]).

For the point set P of a 3-web W we consider the following operation:

Oij : Px P — P;(z,y) =z y = [z: 0 [y];,
where {1,2,3} = {4, j, k}. By Oy we specially denote x (012 y. Then we
have the following canonical correspondence between 3-webs and loops
(cf. [14] p. 81 (15.1)):

THEOREM 2.1. (Characterization Theorem)
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(1) Let W = (P,G1,G2,G3) be a 3-web and let E € G3 with0 € E
be fixed. And let a = [00als, a* : E — E;b + [[bl1 Nala N E, and
a+b=at(b) for each a,b € E. Then E = [0]3 is a loop derived from
W, where 0 is its identity (cf. Figure 3).

(2) Given a loop (E,+) with the identity element 0, let P = E X E,
G1 ={zxE|z € E}, Go = {Exz |z € E}, E be identified with a subset
{{z,z)lz € E} C P viax = (z,z), and let C(a™) = {z0a™*(z)|z € E}.
Then (P,G1,G2,Gs) with G3 = {C(a™)|la € E} is a 3-web. And the
above construction (1) recovers the original loop (E,+).

Therefore, fixing a point 0 in a 3-web W, we may call the set E = [0]
a loop-derivation L(W;0;1,j) with the operation

a+b= [[O]iﬂ [a}j}kﬂ [b] .ﬂE,

where 0 is the identity element of the loop (E, +).

[0]1

QU

/c/a+ b
0Ca

FIGURE 3. Loop operation on E = L(W;0;1,2)
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Besides the reflections in chains or generators, to each point 0 € P
and cyclic permutation v = (132) there corresponds in a natural way
the local map called rotation vy : [0] = [0]1 U [0]2 U [0]3 — [0] de-
fined by v0(z) = [0y N [x]y-1(5 if = € [0];, 4 € {1,2,3}. Note that
(v0)™! = (y71)o and that o induces on the set {[0]1,[0]2,[0]3} the per-
mutation v, while (70)? induces vy~ and () the identity. If there is
an automorphism w of the web W with Fiz(w) = {0} such that the re-
striction w|jg) coincides with one of the maps (70)3, (70)? or o, then w is
unique by (2.8) of [9], and w is called the extension and we say that the
point 0 is n-extendable for n € {2,3,6} if w|jg = (70)%/™. If w(jo) = 70,
then w?[jg = (y0)? and w?|g) = (y0)3, i.e. if 0 € P is 6-extendable,
then also 2- and 3-extendable, and if 0 is 2- and 3-extendable, then also
6-extendable.

From theorems (3.2), (3.6) and (3.8) of [9], we extract the following
theorem and include Figures 4 and 5 relative to local Thomsen and
Reidemeister conditions, which have been missing in [9].

[0]1
Xeg E= [0]3

q/

8 a+b

p a=p3
b

[0]2
0 q2 r
g
~ b q 4
S~ (a+b)

FIGURE 4. (4) & (5) < (6) of Theorem 2.2
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FIGURE 5. (7) & (8) & (9) of Theorem 2.2

THEOREM 2.2. For a point 0 of a web W the following statements
(1), (2) and (3), respectively (4), (5) and (6), respectively (7), (8) and
(9) are equivalent:

(1) The bend-configuration BE(0; id) closes, i.e. for all p € P,

[[[[Phﬂ[0]3]20[0]1}3ﬂ[0]2}1 N [ [[pl2n[0]1]s N [0]2], N[Ols], N
[[{[pla 1 0l2]2 1 (01, 7 O], # 0 (c£. (8] (6.3)),

(2) v e Aut(E,+) in a loop der1vat1on E =L(W;0;4,7),

(3) 0 1is a 2-extendable point,

(4) (R,0,1) is satisfied,

(5) ~(a+b)+a=~bforallabe (E,+)=LW,;0;i,j),

(6) 0 is a 3-extendable point,

(7) (T,0;14,7) is satisfied,

(8) (E,+) = L(W;0;4,5) is a crossed inverse loop, i.e.

~b+(a+b)=a,ie.at+(b—a)=bforallabeE,

(9) 0 is a 6-extendable point.

By the above theorem 2.2 and remarks, we obtain the following the-
orem. However, it can also be proved directly as follows:
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THEOREM 2.3. In a loop (E,+) the following two properties (1) and
(2) are equivalent to (3):

(1) ~(a+b)+a=~bforallabeE,

(2) veAut(E,+),

(3) b+(a—b)=aforalabeE.

Proof. We can express (1) by taov™lo ot =v71 (2) by (va)t =
voator~land (3) by *(ra) = (a*)™!. Soif (1) and (2) are valid, then

t(va) Wy, (v a)"‘)_loy @1, (vo(at) tor™!)or = (a™) ™!, hence
we have (3). Conversely, let (3) be valid, which can be also expressed by

~b+(a+b) = a, since —(~ b) =b. Then ~ (a+b)+a@ ~ (a+b)+ (~

b+ (a+b)) Y ~ band thisis (1), and ~ a+ (~ ) 2 ~ a+ (~ (a+b) +
a) @ . (a+b), hence v~ € Aut(E,+) and so v € Aut(E,+). O

Related to reflections and rotations in a web, there naturally corre-
sponds various identities on the corresponding loop derivations. Now
from the identities of the form (a £b) +a = b, a £ (£b £ a) = +b,
(a£b) £ b= =xa and a £ (+a + b) = +b we see that only the following
5 different cases occur:

(i) (a+b) —a=b,ie a+ (b—a)=> as shown in (8) of the above
theorem 2.2,

(ii) a — (b+a) = —b, i.e. ~(a+b)+ a =~ b asshown in (5) of the
above theorem 2.2,

(ii) (a —b) + b=a, i.e. (a+b)—b=a as shown in (2.4) of [9],

(iv) a4 (—a + b) = b, i.e. §4—o = 1d as shown in (2.3) of [9)],

(v)a—(a+b)=-b,ie. a—(a—b)=hb,
where note that —a =~ «a in the above (iii), (iv) and (v). In fact, for the
case of the above (ii), if we look at the line E of Figure 4 carefully without
changing the point a and switch the point ~ (a+b) to b, then the old ~ b
turn into b+a. And b, respectively a + b becomes —(b+ a), respectively
—b. So we have the equivalence of two identities a — (b + a) = —b and
~ (@a+b)+a=~bof (ii). The rest are direct. However, the case of (v)
will be studied in the next section in the web’s point of view.

3. Local Thomsen conditions and orthogonality in a web

Let W = (P,G1,G2,G3) be a 3-web. Then two chains A,B € C; are
called orthogonal and denoted by A L B if A # B and A(B) = B. We
set AL ={XeC|X1lA}asin[8, 9]
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[0]1
[0]3
[0]2
Y 0

FIGURE 6. (T,0:3)

Now we introduce another new local Thomsen condition (T,0;k) dif-
ferent from (7,0;4, j), where {1,2,3} = {4, J, k}, as follows:

(T, 0;k) Ifzel0]; and y € [0];, then the generator [[z]; N [y]i]
contains the point [[z]x M [0];], N {[y]x N [O]i]j, Le.

[20iylk N (204501 N [yOx:0]5 # 0.

In our web W, we consider now the orbits [p]* = {X'(p) | X € G} of
a point p € P with respect to the generators of G;, ¢ € {1, 2, 3}. Then
by definition we see the following:

k

THEOREM 3.1. Each orbit [p] is an i—chain for all p € P, i €
{1,2,3}, i.e. [p]" €C; in a web W.

THEOREM 3.2. Let D € C, with 0 € D, Gy C D+ and let (E,+) =
L(W;0;1,7), where {i,j,k} = {1,2,3}. Then we have:
(1) Forallde D, [d)* = D =[0* = {(—2)0;; z |z € E},
(2) @;ID acts regularly on D,
(3) Foralla,be D, let A=[00;; aly and let a+b= Ao E(b).
Then (D, +) is a loop isomorphic to (E,+),
(4) DNE={z€FE|xz+z=0}

Proof. (1) Let A € Gy, hence A L D, then A(d) € A(D) = D
implying [d]¥ ¢ D. By the above theorem, [d]¥ € C; and so [d]*¥ = D.
Moreover, for Z € Gy let z, = ZN[0]; and © = [z]; N E. Then —z =
[Zj]i NE, 0= Ziljij Zj and so Z(O) = Zj[:]ij Zi = (‘QZ)DZ']' z.
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(2) Ifa,b € D, C = [a0; blg, hence C L D, then 5(a|:|ij b) =
b0;j a € D(C) = C and C(a) = b, and C is the only element of Gy, with
C(a) = b.

(3) Letv:D — E; z+ [z];NE. Then a+b= Ao E(b) = [[[}];NE}LN
Al,ND = [[y®)inA],nD, A=[00i ¥(a)ls and so ¢(a) + $(b) =
[AN[p()]; N E = ¥(a+b).

(4) Let z € E then by the above (1) we have (—z)0;; + € D. So
(—z)0;; z € E if and only if —z =z if and only if z + = 0. d

THEOREM 3.3. In a 3-web W = (P,G1,G2,G3) the following three
statements are equivalent with {1,2,3} = {1, 7, k}:

(1) (T,0;k) is satisfied,

(2) G C ([0]F)* U{[0]*},

(8) a—(a—b)=bforalabe (E,+)=L(W;0;t3j).

Proof. In order to get the clear picture weset ¢ = 1, 7 = 2 and k = 3,
from which we do not lose any generality of proof. _

(1) = (2) If(T,0;3) is satisfied, then let A, B € Gz anda = A(0) €
[0]. We have to show that B(a) € [0]3, i.e. there exists a C € §3 such

that B(a) = C(0), i.e. C has to go through the points y = B(a)0 and

[0]2

UK B

a yOz A

z

T
L

FIGURE 7. (1) = (2) of Theorem 3.3
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[0]x
[0)° z
yUz X
Y 0 02

FIGURE 8. (2) = (1) of Theorem 3.3

z = 00B(a). Let 2 = 00Ja. Then [yOz]3 = B and [ [z]s N [0]2]1 = [a]1.
So (T,0;3) implies BN [a); N [[y]g N [0]1] , # ¢ and this is equivalent to
z € [y]s, hence we are done by taking C as such [y]s.

(2) = (1) LetGs C ([0)" andletz € [0]1, y € [0]2, X = [z]s,
[v]s and Z = [yOla]3. Then Yo Zo X ([0];) = YoZ([z)s) = ([ 1) = [0]2
and Y o Z o X([0] *) = [0]°. Now {0} = [0 N[0} = [0]* N [0]2, hence
YoZoX({O}) YoZoX([] )ﬂYoZoX([O]l):[O] 0]z = {0}
implies Y~oZoX([ l2) = [0]1, ie. Z o X([0] ) Y ([0}1). Since [[ ]3ﬂ
[0] l,= X([O] ), we obtain Z([[z]s 1 [0]a]1) = Y([0)1) = [[y]a N [0]1],,

[[e]s N [02], N [Iwlsn[OK], € Z = [me] [lz]2 O [yh ]3 Saylng

that (T,0;3) is satisfied.

(1) (3

) Let : [0]1x[0); — Ex Ewith¢(z,y) = ([[[z]2n[y]1]sN
1]2 , [lyls N [ l1]2NE). Then 1 is a bijection and if a, b € E, then

(a,b) = ([[lal2n[0]1]sN[[[Bl2N[0]2]sN[0]2}1],N[0]1, [[B]2N[0]2]3N[0]2)-
Now let a, b € E be given and let (z,y) = ¥~!(a, b). Then Figure 9
shows that (7,0;3) is closed for z, y if and only if a — (a —b) =b. O
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FIGURE 9. (1) & (3) of Theorem 3.3
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