DISTRIBUTION OF VALUES OF FUNCTIONS OVER FINITE FIELDS

HI-JOON CHAE

ABSTRACT. Given a function on a scheme over a finite field, we can count the number of rational points of the scheme having the same values. We show that if the function, viewed as a morphism to the affine line, is proper and its higher direct image sheaves are tamely ramified at the infinity then the values are uniformly distributed up to some degree.

1. Introduction

Let X_0 be a scheme of finite type over a finite field \mathbf{F}_q of order q and let $X = X_0 \otimes \mathbf{F}$ where \mathbf{F} is an algebraic closure of \mathbf{F}_q . Let f be a function on X_0 , in other words a morphism $f: X_0 \to \mathbf{A}^1_{\mathbf{F}_q}$. For each extension \mathbf{F}_{q^n} of \mathbf{F}_q in \mathbf{F} , we have $f_n: X(\mathbf{F}_{q^n}) \to \mathbf{A}^1(\mathbf{F}_{q^n})$. Professor Dae San Kim raised the following question: when are the values of the function f distributed uniformly on X? In other words, when $|f_n^{-1}(y)| \approx |X(\mathbf{F}_{q^n})|/q^n$ for each $y \in \mathbf{F}_{q^n}$ with n sufficiently large?

With the interpretation of exponential sums in terms of ℓ -adic cohomology and the proper base change theorem, the problem reduces to the study of higher direct image sheaves with compact support $\mathbf{R}^i f_! \overline{\mathbf{Q}}_{\ell}$ on $\mathbf{A}^1_{\mathbf{F}_q}$. In this perspective, if (some of) $\mathbf{R}^i f_! \overline{\mathbf{Q}}_{\ell}$'s are geometrically constant, i.e. if their inverse images to $\mathbf{A}^1_{\mathbf{F}}$ are constant, then we can deduce the equidistribution of values of f up to some degree.

When f is proper, it follows from the theory of vanishing cycles that $R^i f_! \overline{\mathbf{Q}}_{\ell}$'s of high degree are lisse. If they are tamely ramified at the infinity (of $\mathbf{A}^1_{\mathbf{F}_a}$), then they are constant on $\mathbf{A}^1_{\mathbf{F}}$. The assumption of

Received March 31, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 11T23, 11G25, 14G15.

Key words and phrases: distribution, values of functions, finite fields.

This work was supported by grant No.R01-2002-000-00083-0(2002) from the Basic Research Program of the Korea Science and Engineering Foundation.

properness can be replaced by the condition of regularity at the infinity (of X_0). In the last section, we give some remarks on the general case.

The author would like to thank Professor Dae San Kim for helpful discussions.

2. Counting rational points and weights

Throughout the paper, we fix a prime number ℓ . For a prime number $p \neq \ell$, \mathbf{F}_p denotes a finite field with p elements and \mathbf{F} its algebraic closure. For a power q of p, \mathbf{F}_q denotes the subfield of \mathbf{F} of order q. By a sheaf, unless otherwise stated, we always mean a \mathbf{Q}_{ℓ} -sheaf.

Following the usual convention, objects defined over \mathbf{F}_q will be denoted with subscription 0, while objects obtained from them by extending \mathbf{F}_q to \mathbf{F} will be denoted without the subscription. For example, if X_0 is a scheme of finite type over \mathbf{F}_q and \mathfrak{F}_0 is a sheaf on it, then \mathfrak{F} is the inverse image of \mathfrak{F}_0 on $X=X_0\otimes_{\mathbf{F}_q}\mathbf{F}$. We have the Frobenius morphism $F:X_0\to X_0$ and an isomorphism $F^*:F^*\mathfrak{F}_0\overset{\sim}{\to}\mathfrak{F}_0$. Extending scalars, we have $F:X\to X$ and for each n the fixed point set X^{F^n} of X under F^n is $X(\mathbf{F}_{q^n})$. The pair (F,F^*) induces endomorphisms F^* of compact support cohomology groups $H^i_c(X,\mathfrak{F})$ and for each closed point x of X_0 the endomorphism F_x of the stalk $\mathfrak{F}_{\overline{x}}$ where \overline{x} is any geometric point localized at x. The sums of traces of Frobenius morphisms on stalks are related to those of Frobenius morphisms on cohomology groups as follows.

THEOREM 1 (Grothendieck-Lefschetz trace formula). Let X_0 be a scheme of finite type over \mathbf{F}_q and \mathfrak{F}_0 a constructible sheaf on it. For each positive integer n we have

$$\sum_{x \in X(\mathbf{F}_{q^n})} tr((F^n)^*, \mathfrak{F}_x) = \sum_i (-1)^i tr((F^*)^n, H_c^i(X, \mathfrak{F})).$$

In particular, the number of \mathbf{F}_{q^n} rational points of X is given by

$$|X(\mathbf{F}_{q^n})| = \sum_{i} (-1)^i \operatorname{tr}((F^*)^n, H_c^i(X, \overline{\mathbf{Q}}_{\ell})).$$

This formula combined with the following theory of weights gives sharp estimates of exponential sums. \mathfrak{F}_0 is said to be *punctually pure* of weight w if for each closed point x of X_0 , all the eigenvalues of F_x acting on $\mathfrak{F}_{\bar{x}}$ are of complex absolute value $N(x)^{w/2}$ for any embedding $\overline{\mathbf{Q}}_{\ell} \to \mathbf{C}$, where $N(x) = q^{\deg(x)}$ is the order of the residue field of x. \mathfrak{F}_0

is said to be *mixed* (of weight $\leq w$) if it admits a finite filtration whose quotients are punctually pure (of weight $\leq w$). One of the main results of [1] is the following.

THEOREM 2 ([1], Théorème 3.3.1). Let $f: X_0 \to S_0$ be a morphism of schemes of finite type over \mathbf{F}_q and \mathfrak{F}_0 a mixed sheaf of weight $\leq n$ on X_0 . Then for each i, the sheaf $R^i f_! \mathfrak{F}_0$ on S_0 is mixed of weight $\leq n + i$.

All the definitions and results above can be generalized to objects of $D_c^b(X_0, \overline{\mathbb{Q}}_{\ell})$ in place of a single sheaf.

3. Rational points of fibers

Let X_0 be a normal, geometrically connected scheme of finite type over \mathbf{F}_q and f a function on it, in other words, $f: X_0 \to \mathbf{A}^1_{\mathbf{F}_q}$ is a morphism. For each $y \in \mathbf{F}_q$ we consider the number of rational points of the fiber over y, $|f^{-1}(y)(\mathbf{F}_q)| = |\{x \in X(\mathbf{F}_q)|f(x) = y\}|$. We are interested in how these numbers vary over $y \in \mathbf{F}_q$. By the Grothendieck-Lefschetz fixed point formula above, we have

$$|f^{-1}(y)(\mathbf{F}_{q^n})| = \sum_{i} (-1)^i \operatorname{tr}((F^*)^n, H_c^i(f^{-1}(y), \overline{\mathbf{Q}}_{\ell})).$$

On the other hand, by the proper base change theorem, the compact support cohomology group $H_c^i(f^{-1}(y), \overline{\mathbf{Q}}_\ell)$ of the fiber over y is isomorphic to the stalk at y of the higher direct image with compact support $\mathbf{R}^i f_! \overline{\mathbf{Q}}_\ell$ and this isomorphism is compatible with Frobenius morphisms. So we should consider sheaves $\mathbf{R}^i f_! \overline{\mathbf{Q}}_\ell$ on $\mathbf{A}^1_{\mathbf{F}_q}$. The sheaves $\mathbf{R}^i f_! \overline{\mathbf{Q}}_\ell$ are not necessarily lisse even when X and f are smooth. In general, they are only constructible, hence are lisse outside a finite number of points in $\mathbf{A}^1_{\mathbf{F}_q}$. When we impose the properness and the tame ramification at the infinity we get the following.

THEOREM 3. Let X_0 be a normal geometrically connected scheme of finite type over \mathbf{F}_q and $f: X_0 \to \mathbf{A}^1_{\mathbf{F}_q}$ a proper and flat morphism. Let d be the dimension of the generic fiber. Suppose that each $R^i f_! \overline{\mathbf{Q}}_{\ell}$ is tamely ramified at the infinity.

- (1) If f is smooth, then each $R^i f_! \overline{\mathbf{Q}}_{\ell}$ is geometrically constant and for each $y \in \mathbf{A}^1(\mathbf{F}_{q^n})$, we have $|f^{-1}(y)(\mathbf{F}_{q^n})| = |X(\mathbf{F}_{q^n})|/q^n$.
- (2) Let Σ be the locus of non-smooth points of f and k be the maximum of dimensions of Σ_s for $s \in \mathbf{A}^1$. For i > d + k + 1, the sheaf $R^i f_! \overline{\mathbf{Q}}_{\ell}$ is geometrically constant. For each $y \in \mathbf{A}^1(\mathbf{F}_{q^n})$, we have $|f^{-1}(y)(\mathbf{F}_{q^n})| = |X(\mathbf{F}_{q^n})|/q^n + O(q^{n(d+k+1)/2})$.

Proof. We follow the line of the proof of [3, (3.1)] Let \bar{s} be a geometric point lying over a closed point s of $\mathbf{A}^1_{\mathbf{F}_q}$ and let $\bar{\eta}$ be a geometric generic point of the henselization of $\mathbf{A}^1_{\mathbf{F}_q}$ at s. Since f is proper, we have a long exact sequence [2, (2.1.8.9)]

$$\cdots \to \mathrm{H}^i(X_{\overline{s}}, \overline{\mathbf{Q}}_\ell) \to \mathrm{H}^i(X_{\bar{\eta}}, \overline{\mathbf{Q}}_\ell) \to \mathrm{H}^i(X_{\overline{s}}, \mathrm{R}\Phi_{\bar{\eta}}(\overline{\mathbf{Q}}_\ell)) \to \cdots$$

where $R\Phi(\overline{\mathbf{Q}}_{\ell})$ denotes the complex of vanishing cycles.

(1) If f is smooth, then $\mathbf{R}\Phi(\overline{\mathbf{Q}}_{\ell}) = 0$ [2, (2.1.5)] hence from the above exact sequence we can see that sheaves $\mathbf{R}^i f_!(\overline{\mathbf{Q}}_{\ell})$ on $\mathbf{A}^1_{\mathbf{F}_q}$ are lisse. Since they are tamely ramified at the infinity, their inverse images to $\mathbf{A}^1_{\mathbf{F}}$ is constant. This follows from the fact that the fundamental group of $\mathbf{A}^1_{\mathbf{F}}$ has no nontrivial finite quotient of order prime to $p = \text{char}(\mathbf{F})$, which is a part of the Abhyankar's conjecture for the affine line [7]. If \mathfrak{F}_0 is a lisse sheaf on a scheme X_0 over \mathbf{F}_q whose inverse image to X is constant, then the action of the arithmetic fundamental group $\pi_1(X_0, \bar{x})$ on the stalk $\mathfrak{F}_{\bar{x}}$ at a geometric point \bar{x} factors through $\text{Gal}(\mathbf{F}/\mathbf{F}_q)$ in the long exact sequence

$$0 \to \pi_1(X, \bar{x}) \to \pi_1(X_0, \bar{x}) \to \operatorname{Gal}(\mathbf{F}/\mathbf{F}_q) \to 0$$

since the geometric fundamental group $\pi_1(X, \bar{x})$ acts trivially. In other words, for any closed point y of X_0 the eigenvalues of the Frobenius endomorphism F_y acting on $\mathfrak{F}_{\bar{y}}$ depends only on the degree of y. Applying this to $\mathrm{R}^i f_!(\overline{\mathbf{Q}}_\ell)$ on $\mathbf{A}^1_{\mathbf{F}_q}$ we get the second result of (1). Really, for each $y \in \mathbf{A}^1(\mathbf{F}_{q^n})$, $\sum_i (-1)^i \mathrm{tr}((F^n)^*, \mathrm{R}^i f_!(\overline{\mathbf{Q}}_\ell)_y) = |f^{-1}(y)(\mathbf{F}_{q^n})|$ is independent of y, hence is equal to $|X(\mathbf{F}_{q^n})|/q^n$.

(2) The first statement is just [4, (4.3)]. Since the proof, which must be obvious to experts, is omitted there, we sketch it. By [4, (4.2)] the dimension of the support of $R^i \Phi(\overline{\mathbf{Q}}_\ell)$ on $X_{\bar{s}}$ is less than or equal to d-i. It follows that in the spectral sequence $H^p(X_{\bar{s}}, R^q \Phi_{\bar{\eta}} \overline{\mathbf{Q}}_\ell) \Rightarrow H^{p+q}(X_{\bar{s}}, R\Phi_{\bar{\eta}} \overline{\mathbf{Q}}_\ell)$, the (p,q) term vanishes unless $p+2q \leq 2d$ and $p \leq 2k$. Hence $H^i(X_{\bar{s}}, R\Phi_{\bar{\eta}} \overline{\mathbf{Q}}_\ell) = 0$ for i > d+k and $H^i(X_{\bar{s}}, \overline{\mathbf{Q}}_\ell) \to H^i(X_{\bar{\eta}}, \overline{\mathbf{Q}}_\ell)$ in the above long exact sequence is an isomorphism for i > d+k+1. By the same arguments as above, $R^i f_!(\overline{\mathbf{Q}}_\ell)$ is geometrically constant for

i > d + k + 1. Let $y \in \mathbf{F}_{q^n}$, then we have

$$|X(\mathbf{F}_{q^n})| = \sum_{z \in \mathbf{F}_{q^n}} |f^{-1}(z)(\mathbf{F}_{q^n})|$$

$$= \sum_{z \in \mathbf{F}_{q^n}} \sum_{i} (-1)^i \operatorname{tr}((F^n)^*, (\mathbf{R}^i f_! \overline{\mathbf{Q}}_{\ell})_z)$$

$$= q^n \sum_{i>d+k+1} (-1)^i \operatorname{tr}((F^n)^*, (\mathbf{R}^i f_! \overline{\mathbf{Q}}_{\ell})_y)$$

$$+ \sum_{z} \sum_{i \leq d+k+1} (-1)^i \operatorname{tr}((F^n)^*, (\mathbf{R}^i f_! \overline{\mathbf{Q}}_{\ell})_z).$$

Since $R^i f_! \overline{\mathbb{Q}}_{\ell}$ is mixed of weight $\leq i$, the second result of (2) follows.

4. Remarks

- (1) Without the assumption of the properness of f, the above arguments still can be applied in some cases. For example, if $f: X_0 \to \mathbf{A}^1_{\mathbf{F}_q}$ factors through $X_0 \hookrightarrow \overline{X}_0 \to \mathbf{A}^1_{\mathbf{F}_q}$ where $\overline{X}_0 \to \mathbf{A}^1_{\mathbf{F}_q}$ is proper and flat, and the complement of X_0 in \overline{X}_0 is a relative divisor with normal crossings, then we can apply the same arguments as in the proof of the above theorem [2, (2.1.9)].
- (2) In general, we can not expect a uniform distribution of values of function. More precisely, as explained in the last section, the sheaf $\mathfrak{F}_0 = \mathbb{R}^i f_! \overline{\mathbf{Q}}_\ell$ is lisse on an open dense subset $U_0 \subset \mathbf{A}^1_{\mathbf{F}_a}$.

A lisse sheaf \mathfrak{F}_0 on a smooth curve U_0 over \mathbf{F}_q defines a representation of the arithmetic fundamental group $\pi_1(U_0,\bar{x})$ on the stalk $\mathfrak{F}_{\bar{x}}$ at a geometric point \bar{x} , in other words, a homomorphism $\pi_1(U_0,\bar{x}) \to \mathrm{GL}(\mathfrak{F}_{\bar{x}})$. The Zariski closure G^0 of the image of $\pi_1(U)$ in $\mathrm{GL}_{\overline{\mathbf{Q}}_\ell}$ is called the geometric monodromy group of \mathfrak{F}_0 . So \mathfrak{F}_0 is geometrically constant if and only if $G^0 = \{e\}$. Let G be the extension by G^0 of the subgroup \mathbf{Z} of $\mathrm{Gal}(\mathbf{F}/\mathbf{F}_q)$ generated by the Frobenius element as in [1, (1.3.7)]. For each closed point x of U_0 , the Frobenius morphism F_x defines a conjugacy class in G.

If \mathfrak{F}_0 is semisimple, or more generally if geometrically semisimple, then the connected component of the geometric monodromy group is semisimple [1, (1.3.9)]. And, roughly speaking, the Frobenius elements F_x are "equidistributed" in the space $G_{\mathbf{R}}^{\natural}$ of conjugacy classes in a maximal compact (modulo center) subgroup $G_{\mathbf{R}}$ of $G_{\mathbf{C}} = G \otimes_{\overline{\mathbf{O}}_{\epsilon}} \mathbf{C}$ [1, (3.5.3)].

If \mathfrak{F}_0 is lisse and mixed, as in our case, then it admits an increasing filtration by lisse sheaves whose successive quotients are punctually pure. Moreover, lisse and punctually pure sheaf on a normal scheme is geometrically semisimple [1, (3.4.1)]. Hence we can apply the equidistribution theorem to these components of the filtration.

Now consider our case of $\mathfrak{F}_0 = \mathbb{R}^i f_! \overline{\mathbf{Q}}_{\ell}$ which is mixed and lisse on some open $U_0 \subset \mathbf{A}^1_{\mathbf{F}_q}$. As above it admits an increasing filtration by lisse sheaves whose quotients are punctually pure. If all these components are geometrically constant, then we can deduce the equidistribution of values of f on U as in the last theorem.

(3) Let R be a finitely generated subring of \mathbf{C} and X be a scheme of finite type over R. If $f: X \to \mathbf{A}^1_R$ is a morphism over R, we may consider its "reduction" $f_\phi: X_\phi \to \mathbf{A}^1_{R_\phi}$ for each homomorphism $\phi: R \to k$ onto a finite field k. Then for almost all ϕ , the sheaves $\mathbf{R}^i(f_\phi)_!\overline{\mathbf{Q}}_\ell$ are tamely ramified at the infinity. More precisely, there exists a positive integer N and a divisor D of $\mathbf{A}^1_{R[1/N]}$ which is finite and etale over R[1/N] such that for any lisse sheaf \mathfrak{F} on X, each $\mathbf{R}^i f_! \mathfrak{F}$ are lisse on $\mathbf{A}^1_{R[1/N]} - D$ and D [6, (3.1.2)]. They are tamely ramified along $D \cup \{\infty\}$ [5, (4.7.1)]. Hence if f is proper, then for "reduction" of f module ϕ not dividing $N\ell$, we can apply the last theorem.

References

- [1] P. Deligne, La conjecture de Weil, II, Publ. Math. IHES 52 (1980), 137-252.
- [2] ______, Le formalisme des cycles évanescents, in Groupes de Monodromie en Géométrie Algébrique, Séminaire de Géométrie Algébrique 7 II, by P. Deligne and N. Katz, Lecture Notes in Math. **340** (1973), 82–115.
- [3] J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology and Newton polyhedra. Invent. Math. 106 (1991), 275–294.
- [4] A. Grothendieck, Exposé I, in Groupes de Monodromie en Géométrie Algébrique, Séminaire de Géométrie Algébrique 7 I, by A. Grothendieck, M. Raynaud and D. S. Rim, Lecture Notes in Math. 288 (1972), 1-24.
- [5] N. Katz, Sommes exponentielles, Astérisque 79 (1980).
- [6] N. Katz and G. Laumon, Transformation de Fourier et majoration de sommes exponentielles, Publ. Math. IHES 62 (1985), 145-202.
- [7] M. Raynaud, Revêtements de la droite affine en caractéristique p > 0 et conjecture d'Abhyankar, Invent. Math. 116 (1994), 425-462.

DEPARTMENT OF MATHEMATICS EDUCATION, HONGIK UNIVERSITY, SEOUL 121-791, KOREA

E-mail: hchae@math.hongik.ac.kr