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A Uniform Formulation for Scattering by Very Thin Dielectric Strips
for TM Wave Incidence
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Abstract

In this paper a new approximate formulation for bistatic scattering by a thin dielectric strip for TM wave incidence
is obtained. This formulation is uniform, which is valid for any incident angles, observation points, and any properties
of the strip such as dielectric constants, width, and thickness. The accuracy of the proposed solution is examined by
comparisons with a method of moments(MoM) for various situations.
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I. Introduction

Scattering from thin dielectric sheets is encountered
in many practical situations. To simplify the problem, a
thin dielectric structure is usually modeled with a
resistive sheet’. Among the canonical problems, sca-
ttering by a resistive strip has been intensively studied
by a number of researchers. Many approximate solu-
tions have been proposed for the problem, which all are
based on the known exact solution for a resistive half
plane'™. Uniform solutions valid at the transition regions
between the shadow and reflection boundaries for the
half-plane is needed to include higher order multiple
interactions between two edges of a finite strip. One
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such method is the Extended Spectral Ray Method
(ESRM), which can be applied to a general multiple
scattering problems with some analytical complexity.
This method takes account for multiple scattering in a
spectral domain. For example, at one edge diffraction
effect is calculated with a non-uniform formulation, and
the calculated diffracted field is considered as an inci-
dence field on the other edge in a spectral domain.
Hence a resulting double diffracted field can be repre-
sented in terms of Fourier transform. Using a steepest
descent method(SDM), a uniform solution can be
obtained. Other method is self-consistent GTD for-
mulation”. In the formulation, multiply scattered sur-
face waves between two edges are simply estimated by

sty AR EM)89)(The Graduate School of Information Technology and Telecommunication, Inha University)



A Uniform Formulation for Scattering by Very Thin Dielectric Strips for TM Wave Incidence

a similar approach to the generalized S-matrix method.
The method is simple, but it is known that the method
is not valid at transition regions. As explained, all
existing methods directly use the formulation for the
half-plane, and hence the resulting solutions contain a
higher transcendental fimction known as Maliuzhinets
function.

Recently an approximate solution for a very thin
dielectric object with any size and shape was proposed
™ The solution is represented in terms of a spectral
integral whose integrand contains only elementary func-
tions. Based on this formal solution, a uniform solution
for bistatic scattering by a very thin dielectric strip is
formulated for a TM wave incidence. Through com-
parisons of results calculated by a numerical method
such as MoM, the new formulation is verified for
several cases. In Section 2, the approximate solution
is formulated, and Section 3, the validity of the pro-
posed solution is investigated. For this paper, ¢™ is
assumed.

II. Formulation

A thin dielectric strip is located in a xy plane, and
its normal is z-axis as seen in Fig. 1. The dielectric
constant, width, and thickness of the strip are ¢,, w,
and 7, respectively. When a TM wave is incident on the
thin dielectric strip, the scattered field in the far-field

F N./ 2 ikomnid) p’)
¥y ;kn—/:f P.( ng)‘

L E
region is represented as
Here PJ-) is known as the far-field amplitudem, and
can be written in terms of a single integral as

k 0‘_ . Recently an approximate expression of / is

formulated as [4]

1 s
® sin )—c-‘jlknw sin ke —k, kow
k 2 2
1= J‘d‘x £ 7 3
(kx "kx )(kx _kx)
4 os(k; ;k; kowj+ % R | _141 JoliR)er2

@
i
where k. =1-k* and *=7"€D 1 1 and I are

Fig. 1. A thin dielectric strip.

written as

1
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Here "+" is chosen for b, and "~" for L. By

substituting k. =-k in I , it can be easily shown that
L=F In (1) I is a new approximate diffraction
coefficient of a resistive half plane. L, and ; are
interpreted as diffracted waves at the two edges which
propagate in the direction to the opposite edge in a
spectral domain. Therefore the first term in (1) repre-
sents singly diffracted waves at the two edges, and the
rest terms are for multiply diffracted waves between
two edges.

When I, is carried out analytically, one difficulty is
de
an evaluation of .[_m sin@—q With l2<1 and ¢ real.

Since the integrand contains a pole in the integral range,
the integral should be defined in a sense of Cauchy

)
Z=1an> the integral is decom-
posed into two integrals:

IR/T de 2 1 J-l dz 1 dz
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where a4 Va? + fora,. If the first inte-

principle-value. Using

grand in the above integral contains a pole(a>0), the
integral can be performed as

e

Since the other integrand is analytic, the integral is

. 1-qg
=In(-1- In(l— mi=In-"—4
+Lz (1-a)+ind-a)+mi=In 73
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simply evaluated as >1z—a,  1+a, . Therefore
Im 6 ___ 2 1 [lnl % lrl1 +7i|=0
“2sing-a aaq - a,l_ 1+a +a,

For a<0, is can be simply shown that the above
result holds. After lengthy algebraic manipulation with
a help of the above equation, ; can be evaluated

analytically and given by
am tanh‘ ‘ + £
= @

Ji is expressed as

k1, =
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g = cos™ n —2tan -
where ' Jpi-1 in+1

ak, =—-1- . and k:z_kz k.z

However, I cannot be carried out analytically, and
so an asympiotic technique such as steepest descent
method(SDM) can be used to obtain an analytical
formulation. Since the integrand in L has four poles at
k. =k, k and +-ak | first, the integrand can be
transformed into a more conventional form for applying
the SDM approximation:

il [, =5

1 k" K] e
k "k -ak |k -K -k

Taking a partial expansion of the integrand in the
second integral again, each integrands in the resulting
integrand contain only one pole. Hence by using the
standard SDM procedure™, the pole contribution can be
more easily taken account into to obtain a uniform
solution. The first term of the above integral is a
contribution for edge-on incidence, and written as

k.l
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In this paper, an asymptotic procedure for the first
integral is given. For the rest portions of the integral
can be evaluated asymptotically using the same pro-
cedure. The first part in the above integral represents
Hankel function of the first kind of order 1. Hence only
the second term should be asymptotically evaluated, and

is denoted as ;. Using k. =ksin® | I; is written as

It = cosé@

= ikowsing do
i=J; cosO—ak,

where I" is a SDM path®™. By another substitution,

sin@ =1+is?,

-y 2i
I = e;*nw —kywr? cosf
2 J.-e cos@ —ak, \[s? —2;
To remove the pole in the above integral, the
integrand is decomposed into two parts: one contains
the pole, and the other is regular as

cosf 2i b
=—— 4T
cosO -k, \[s2-2i s-—s, =)

The residuee b can be calculated as b=

lim(s - cos@ 2i

1
=) e —ak, Js*=2i Jn'-1. Therefore the
final integral becomes

2

The first term of the above integral can be calculated

+T(.v)} W gy = b ——dc+j T(s)e ™" ds

using a known identity wa)= 2 [ Sde=e T entel-i) (6]
Here er/e() is the complementary error function, which
is related to the GTD transition function. Since the
second term doesn't contain any pole, the first order
approximation of the integral is sufficient. Finally I, is
expressed as

I~ aHP (kgw) + e"""i: ’—— + mbw(.f WS, :]

where T,=T(0)=b/5 and s =ia-vi-172). Follow-



A Uniform Formulation for Scattering by Very Thin Dielectric Strips for TM Wave Incidence

ing the same procedure, each integrals in , can be
carried out asymptotically as

szU[I t o {f3(k') Sk )}]
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Here £ is given by
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For forward scattering direction(%. = &, ),
expressions for /1 and L, have a removable pole.
Therefore for this case we need to take limit of /; and

I as k. =k For I, only £ should be modified as
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b is more complicated, and using L'Hospital rule, the
final result is given by
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where P'=ime™"mki-1) For the case of k. =k

and |k, |=1(forward scattering when edge-on incidence),
the above expression contains several divergent terms

1

such as 1+, but these terms cancel each other.
Therefore by rearranging the divergent terms and using
the first-order asymptotic expansion of w(-) function™®,

(1) is modified slightly into

I~_1_1+I_2'e—1kok +13 S 4 4| o4 W _ i
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In I, fi is simplified again into /=727 &) I and
I are given by
I or Iy =1, —i2zne"™* — zH Y (kyw)

+(liki)e""”[ﬁ_{+,lnknw(l+i)}
Here "+" is chosen for {2 and "—" for 1.

M. Numerical Results

The first example is a calculation of scatterings in
forward and back directions from a thin dielectric strip
with thickness 0.025 Ao and &,=4+i04. Fig. 2 and 3
show comparisons of normalized radar echo width of
the strip as a function of w/ Ao, which are calculated by
the proposed solution given in Section 2 and MoM.
Excellent agreement is observed for the two cases. In
Fig. 3, contributions of single and multiply diffracted
fields are also plotted. For even very small strips, the
new formulation generates very accurate results. For the
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Fig. 2. Backscattering by a thin strip for edge-on
incidence as a function of width. The dielec-
tric constant and thickness of the strip are 4
+1i0.4 and 0.025 Ao, respectively.

797



BREREBERIGE £155 F IR 004F 85

° 16 20 30 Q &0
Wik, wi,
(a) Comparison of results calculated by the new

formulation and MoM
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(b) Single diffraction and multiple difftaction contributions

Fig. 3. Forward scattering by a thin- strip for edge-on
incidence as a function of width. The dielectric
constant and thickness of the strip are 4 +i0.4
and 0.025 A, respectively.

Fig. 4. Backscattering as a function of incidence angles
by a thin dielectric strip, whose width is 5 Ao,
dielectric constant is 4 +i0.4, and thickness
0.025 Ao.

rest of calculations presented here the width of the strip
is fixed to be 5 Ao. Fig. 4 is a plot of backscattering
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as a function of incidence angles. Except at some angles
around #;=75°, the new uniform solution provides
very accurate results. Fig. 5 and 6 are plots of bistatic
scattering by the strip with the same dielectric constant
and thickness as the previous case, for 6;=30" and 4;
=90° (edge-on incidence), respectively. As shown in
these figures, the asymptotic solution produces very
accurate results, but some discrepancy is observed at
angles around 75° for edge-on incidence. The final
example is an investigation of effect of dielectric
constant. Fig. 7 shows a comparison of echo width as
a function of the real part of dielectric constant with a
fixed imaginary part of 0.4. Fig. 8 is the echo width as
a function of the imaginary part of the dielectric
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Fig. 5. Bistatic scattering as a function of observation
angles for 6:=30° by a thin dielectric strip,
whose width is 5 A, dielectric constant is 4 +
i0.4, and thickness 0.025 A¢.

Fig. 6. Bistatic scattering as a function of observation
dngles for 6~90° by a thin dielectric strip,
whose width is 5 Ao, dielectric constant is 4 +
i0.4, and thickness 0.025 Ao.
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Fig. 7. Forward scattering by a thin dielectric strip as
a function of real part of dielectric constant
with a fixed imaginary part of 04. Wave is
incident at 30°, and the strip's width, and
thickness are 5 Aq, 0.025 Ao, respectively.
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Fig. 8. Forward scattering by a thin dielectric strip as
a function of imaginary part of dielectric
constant with a fixed real part of 20. Wave is
incident at 30°, and the strip's width, and
thickness are 5 Ao, 0.025 Ao, respectively.

constant with a fixed real part of 20. For these simu-
lations the incidence angle( #;) is fixed to be 30° and
the observation point( 4 ;)(forward direction). The asy-
mptotic solution is again in excellent agreement with
MoM. For the next two figures, edge-on incidence is
considered, and the echo width is plotted in back-
scattering and forward scattering directions as a function
of real part of the dielectric constant with a fixed
imaginary part of 0.4. Fig. 9 shows some discrepancy,
but Fig. 10 shows excellent agreement. Since a pulse
basis MoM is used, at high dielectric constants some
error is observed in Fig. 9 and 10, and hence the error

Fig. 9. Backscattering by a thin dielectric strip as a
function of real part of dielectric constant
with a fixed imaginary part of 0.4. Wave is
incident at 90°, and the width, and thickness
of the strip are 5 Aq, 0.025 Ao, respectively.
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Fig. 10. Forward scattering by a thin dielectric strip
as a function of real part of dielectric
constant with a fixed imaginary part of 0.4.
Wave is incident at 90°, and the width, and
thickness of the strip are 549, 0.025 Ay,
respectively.

can be reduced with increasing number of cells. From
the examinations, it is observed that when an incident
wave or/and observation point are at near-grazing angles
and the observation point is in the backward direction,
there are some discrepancies between the exact and
approximate results. The error may be caused by the
fact that the original formulation misses some surface
wave components. However the accuracy of the
formulation is overall very high, and hence this new
uniform solution can be used for any incidence and
observation angles without a big error.
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IV. Conclusions

In this paper, a new uniform formulation of sca-
ttering by a very thin homogeneous dielectric strip for
a TM wave incidence is obtained. It contains only
elementary functions such as trigonometric functions
and a transcendental function known as GTD transition
function. The solution is verified by comparisons with
MoM in various situations. It is observed that the new
solution is very accurate, but sometimes the accuracy of
the formulation is degenerated when the incidence angle
or/and the observation point are at near-grazing angles.
Since the original formulation is approximate, the error
may be caused by missing some surface components.
Hence it is also observed that the degeneration of the
accuracy is dependant of dielectric constant, width, and
thickness of the strip.
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