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NONLINEAR VARIATIONAL EVOLUTION
INEQUALITIES WITH NONLOCAL CONDITIONS

JIN-MUN JEONG, DONG-HwA KIM AND JONG-YEOUL PARK

ABSTRACT. The existence of solutions for the nonlinear functional
differential equation with nonlocal conditions governed by the vari-
ational inequality is studied. The regularity and a variation of
solutions of the equation are also given.

1. Introduction

Let H and V be two complex Hilbert spaces. Assume that V is dense
subspace in H and the injection of V into H is continuous.

In this paper, we deal with the existence and regularity for solutions of
the following nonlinear functional differential equation with the nonlocal
initial condition governed by the variational inequality in Hilbert spaces:

(D | Aa(t),alt) - 2) + o(alt) - 9(2)
(VIP) < (f(t,z(t) + k(t), z(t) — 2), ae., 0<t<T, z€V

z(0) = zo — g(t1, - - - tp,z(-)).

The norms on V, H and the duality pairing between V* and V will be
denoted by ||-||, | -] and (-, ), respectively. Let ¢ : V — (—o0,+00] be a
lower semicontinuous, proper convex function and g : L?(0,T;V) — H
be assumed to be uniformly Lipschitz continuous. Let A be the operator
associated with a sesquilinear form a(-,-) defined on V' x V satisfying
Garding’s inequality:

(Au,v) = a(u,v), u, veV
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which is assumed to satisfy
(Au, w) 2 wilul]* — walul?

where w; > 0 and w; is a real number. Then A generates an analytic
semigroup in both H and V* (see [9; Theorem 3.6.1]) and so the equa-
tion (VIP) may be considered as an equation in H as well as in V*.
The nonlinear operator f from [0,T] X V to H is assumed to be uni-
formly Lipschitz continuous with respect to the second variable. Noting
the definition of the subdifferential operator 8¢, the problem (VIP) is
represented by the following nonlinear functional differential problem on
H

t
(D) %‘) + As(t) + 08(x(t)) > f(t,2(t) + k(t), 0<t<T
2(0) = zo — 9().

The existence and regularity for solutions of the parabolic variational
inequality in the linear case( f = 0) without nonlocal initial conditions
was investigated by Brézis [5] (also see section 4.3.2 in Barbu [4]). Jack-
son [8] showed the existence and uniqueness of solutions to semilinear
nonlocal parabolic equations and Byszewski and Akca [7] studied the
existence of mild and classical solutions of nonlocal Cauchy problem for
a semilinear functional differential evolution equation. Aizicovici, Gao,
Mckibben [1, 2] have studied for differential equations governed by m-
accretive operators under various compactness assumptions. For some
other results on nonlocal problems see the bibliographies of [1, 2, 3, 6,
7).

In this note, with some general condition of the Lipschitz continuity of
nonlinear operator f from [0, T|xV to H, we established the problem for
the wellposedness and regularity of solutions of nonlinear variational evo-
lution inequalities with nonlocal conditions by converting the problem
into the contraction principle and the norm estimate of a solution of the
above nonlinear equation on L2(0,T; V)NW42(0,T; V*)NC([0,T]; H).
Consequently, an example illustrated the applicability of our work is
given in the last section.

2. Preliminaries

Let V and H be complex Hilbert spaces forming Gelfand triple V C
H C V* with pivot space H. For the sake of simplicity, we may consider

(2.1) lulle < ul <lull, weV
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where || - ||« is the norm of the element of V*. Let a(:,-) be a bounded
sesquilinear form defined in V' x V and satisfying Garding’s inequality

(2.2) Re a(u,u) > wi|ul]? — walul?,

where wi > 0 and ws is a real number.
Let A be the operator associated with the sesquilinear form af(,-):

(Au,v) = a(u,v), wu, veWV

Then A is a bounded linear operator from V to V* and —A generates
an analytic semigroup in both of H and V* as is seen in [10; Theorem
3.6.1]. The realization for the operator A in H which is the restriction
of A to

D(A)y={ueV;Auc H}

is also denoted by A.
The following L?-regularity for the abstract linear parabolic equation

dz(t) _
(LE) o TATt) =k(@t), 0<t<T,
z(0) = zo

has a unique solution z in [0,T] for each T > 0 if zg € (D(A), H)1/2,2
and k € L?(0,T; H) where (D(A), H); 2,2 is the real interpolation space
between D(A) and H. Moreover, we have

(2.3) 12|l 20,75 D(apAwr 20,7,y < C2(llzoll(Dea) 1)y 0
+ ||kl L20,751))
where Cy depends on T and M (see [9]).

If an operator A is bounded linear from V to V* associated with the
sesquilinear form a(-,-) then it is easily seen that

T
H={zeV": / [|AetAz|2dt < oo},
0

for the time T' > 0. Therefore, in terms of the intermediate theory we
can see that
ViV )22 =H

and obtain the following results.
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PROPOSITION 2.1. Let zo € H and k € L*(0,T;V*), T > 0. Then
there exists a unique solution z of (LE) belonging to

L*0,T; V) nWh2(0,T; V*) c C([0,T]; H)
and satisfying
(2.4) ]| L2 0,7;vynwr20,m5v+) < Cal|zo| + |IEl|L20,73v));

where C5 is a constant depending on T'.

Let ¢ : V — (—00,+0o0] be a lower semicontinuous, proper convex
function. Then the subdifferential operator J¢ of ¢ is defined by

0d(z) = {z* € V*;¢(x) < d(y) + (z*,x —y), yeV}

First, let us concern with the following perturbation of subdifferential
operator:

(VE) { dfz_(tt) + Az(t) + 0g(z(t)) 3 k(t), 0<t<T,
z(0) = zo.

Using the regularity for the variational inequality of parabolic type
as seen in [4; section 4.3] we have the following results on the equation
(VE). We denote the closure in H of the set D(¢) = {u € V : ¢(u) < oo}

by D(¢) and the minimal segment of 8¢ by (8¢)°.

PROPOSITION 2.2. 1) Let k € L?(0,T; V*) and zo € D(¢). Then the
equation (VE) has a unique solution

x € L?(0,T;V)nc([0,T]; H),
which satisfies
o (t) = (k(t) — Ax(t) — 0g(x(t)))°
and
(2.5) llzllz2ne < C3(1 + |zo + [|kl| L2(0,73v+))

where C3 is a positive constant and L>NC = L?(0,T;V)NC([0,T); H).
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2) Let A be symmetric and let us assume that there exist h € H such
that for every ¢ > 0 and any y € D(¢)

Je(y + €h) € D(¢) and ¢(J(y + €h)) < ¢(y)

where J, = (I + €A)™1. Then for k € L?(0,T;H) and zo € D(¢) NV
the equation (VE) has a unique solution

z € L*(0,T; D(A)) nWh(0,T; H)n C([0,T}; H),
which satisfies

(2.6) 2]l L2nwr2ne < C3(1 + |lzoll + ||kl 20,7 11))-

Here, we remark that if D(A) endowed with the graph norm of A to H
is compactly embedded in V and x € L?(0,T; D(A))(or the semigroup
operator S(t) generated by A is compact), the following embedding

L*(0,T; D(A) NnW2(0,T; H) C L?(0,T; V)

is compact in view of the interpolation theory. Hence, the mapping k +—
z is compact from L2(0,T; H) to L?(0,T; V'), which is also applicable to
optimal control problem.

3. Existence of solutions

In this section, we consider the existence and regularity for solutions
of (NDE) under the following basic assumptions:

(H1) Let f be a nonlinear valued mapping from [0,7] x V into H.
We assume that

If(t,z1) — f(t,22)] < L||2y — 22]|, 21, 2 € V.

(H2) For 0 < T' < T, g: L?0,T";V) — H is assumed to be
uniformly Lipschitz continuous, namely that there is a constant M > 0
such that

l9(z1) — g(z2)| £ M||z1 — 22||L200,7v), 1, %2 € L2(0,T;V)

and

g9(z) € D(¢), =& L*(0,T;V).
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We assume the following inequality condition.
(H3) 2wy — M?e2+2T > 0,

The condition (H3) shows some information for the relation among
the parameters, w1, we, M and T. We shall prove that the existence of
solutions of (NDE) is guaranteed if wy, M and T is sufficiently small.
It may be possible to prove the existence of solutions at a large time
T in case where the system is assumed to satisfy certain inequality, for
instance, we < 0. If the nonlinear term f is a reaction rate function,
then the value of f means the velocity of generating a chemical material
and Lipschitz constant is the accelerative rate of its reaction. We note
that the Lipschitz constant M of the nonlinear term f has no effect on
the limits of the existence of solutions.of (NDE).

The following Lemma is from Brézis [5; Lemma A.5].

LEMMA 3.1. Letm € L'(0,T;R) satisfying m(t) > 0 for allt € (0,T)
and a > 0 be a constant. Let b be a continuous function on [0,T] C R
satisfying the following inequality:

%b?(t) < %a2+ /0 “ms)b(s)ds, t e [0,T].
Then,
[b(t)| < a +/ m(s)ds, te€0,T].

We establish the following results on the solvability of (NDE).
THEOREM 3.1. Let the assumptions (H1), (H2) and (H3) be satisfied.
Assume that k € L?(0,T; H) and z9 € D(¢). Then, the equation (NDE)
has a unique solution
(3.1) x € L*(0,T;V)nC([0,T]; H) nWbH2(0,T; H)

and there exists a constant C4 depending on T such that

(3.2) llzflz20cnwee < Ca(1+ |zo| + |IKl|L20,75v+))-
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Proof. Let us fix 0 < Ty < T so that

L2 +2LM

1
2w2T0 1 < M2 2(4)2T
Torg (e -1 <w — 5 e

(3.3)
where w;(i = 1,2), L and M are constants in (2.2), (H1) and (H2),
respectively.

Noting that z¢ + g(z) € D(¢) for any x € L%(0,Tp; V) by (H2), the
following equation

{ deiQ + Ay(t) +9¢(y(t)) 3 f(t,2(1)) + k(t), 0<t<To,
y(0) = zo + g(x) |

has a unique solution y € L?(0,Ty; V)N C([0, Tp); H) in virtue of Propo-
sition 2.2.
For i =1, 2, we consider the following equation.

dt

(3.4) { WO .. Ayi(t) + 0d(yi(t)) D f(t,z:(t)) + k(t), 0<t< Ty,
¥:(0) = zo + g(x;).

We are going to show that a well known extension of the contraction
principle gives the existence of a unique solution of (NDE) if the condi-
tion (3.3) is satisfied. Let y1, y2 be the solutions of (3.4) with z, replaced
by z1, z2 € L2(0,Tp; V), respectively. From (3.4) it follows that

C%(yl(t) —y2(t)) + A(y1(t) — 2(2)) + 0 (y1(t)) — Fgp(ya(t))
5 f(t,x1(t)) — f(t,z2(t)), t>0.

Acting on both sides by y;(¢) — y2(t) and using the monotonicity of d¢,
we have

(3.5)

2L 1) — (O + el (8) — I

< waly () — g2 (P + (F(t, 21(1) — F(t, 22(2)), 1 () — y2(1))
< woly1(t) — y2 () + Ll () — z2(B)]] ly1 (2) — w2(2)].

Putting
G(t) = Li|lz1(t) — z2(®)I| [y1(t) — y2(2)],
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and integrating (3.5) over (0,t), this yields that

(3.6)
S (0) = 20 + / 1(5) — a(s) |

l9(21) — g(@2)? + w2 / lya(s) — wa(s)?ds + / G(s)ds.

l\.’)lr—-

From (3.6) it follows that

60 5 [ () - sl Pds)
26_2w2t{%|y1 (t) — y2()® — wa /Ot ly1(s) — y2(s)[*ds}
6_2“’2tl xy) — 2 t s)ds).
< 262 (Glo(ar) — (@)l + | Gl

Thus, integrating (3.7) over (0,t) we have

t
/ v (s) — ya(s)ds

1-— 6—20.)2t t T

< o lglen) - glen) 2 [ e [ Glo)dsar
1— e—2w ot 9 "

= ————|g(z1) — g(z2)| +2/ / T42TdrG(s)ds
1— e—ZW2t

= 2 fglen) - gl + /0 (7228 — =22t G(s)ds,

2w2
hence, we get

(3.8)

2wat 1

ar [ 1n(9) = (o) Pds <= lo(en) ~ g(az)P
t 2w2(t=9) _ 1)@(s)ds
+/0 (e :
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Combining (3.6) with (3.8) it holds that

B9 Hha® - wOF +ur [ () - valo)lPds
g2wst 2 ¢ 2wg(t—s)
< S lotan) — gfen)* + [ 209G (s)ds
e2w2t

=T |9($1)“9(332)|2

+/ e22C=8) Li|z1(s) — z2(8)|| ly1(s) — y2(s)|ds,
0

which implies

N =

“(e7 2y (1) — w2 (t)])® + wle_wzt/ lly1(s) — y2(s))|?ds
0
< 2lole) - o(z2)P

t
+L [ e lma(s) - aa(lle™ "l (s) - va(o)lds.
0
Here, by using Lemma 3.1, we obtain that

(3.10) e y1(t) — y2(1)] < lg(z1) — g(@2)]

+ /Ot Le™2%||z1(8) — x2(s)||ds.

From (3.9) and (3.10) it follows that

1 t
1))~ 32 OF +01 [ lla(s) ~ (o)l
0
M262W2t
< "—2“||391 - x2||%2(0,T0;V)

+L / €292(=9) |z (5) — za(s)|l( / Lew2(=D| [z, (1) — zo(7)l|dr

+e°|g(z1) — g(22)|)ds

M262w2t 9
= —E—_Hxl - 372!|L2(0,T0-,V)
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t . s
+ L262‘”2t/0 e~ “**||z1(s) — w2(3)||/ e~ “?7||z1 (1) — z2(7)||dTds

+ LMe***g(zy) - g(z2)| / 252, (5) — ()]s

M2e2w2t
2

||171 - xQH%?(O,To;V) + I+ II,

- 722wt —waT - 2
r=rreet [ L8 [ et - aalaryias
e / €7 ||z () — 2 () |dr}?
0
t t
2L2 2w2t/ e—2w;»‘rd,r/ HCE1(T)—:L'2(T)H2dT
0

L?
< @t =1) [ llea) - aalo)Pas,
2wt_
o LM - 1)

Ir < T”M — 2|20 10,1

Hence, we conclude that

1 t
G1) G = wOF +r [ I - w()Pds

M262w2t 2

S “—“—2———||~’01 - 932||L2(0,T0;V)
L? +2LM
+ T (e** T — 1|21 — 22|12 (0.1,v):

4ws
Starting from initial value z¢(t) = zo + g(xo), consider a sequence
{zn ()} satisfying
{ %wnﬂ(t) + Azns1(t) + 0d(zarr ()3 F(t,@n(t)) + k(t), 0 < t < T,
Zn+1(0) = Zo + g(zn).
Then the inequality (3.11) implies that for 0 < ¢t < Ty,
(3.12)

1 t
1m0 =2 OF +01 [ llania(s) = an(s) s

M2 e2w2t

< “——'5—”% - xn—1”%2(0,To;V)
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L? +2LM
ek

2w2To s 1
4(.02 (e

Mzn ~ 2n-1lZ2(0,1,v):

So by virtue of the condition (3.3), we have that
o0
Z ”xn-{—l - xn“LQ(O,TO;V) < 00,

it gives that there exists z(-) € L?(0,T; V) such that
zn() = () in L*0,Tn; V),

and hence, from (3.12) there exists z(-) € C([0,T]; H) such that
Zn(-) — z(-) in C([0,To); H).

Next, we establish a variation of constant formula (3.2) of a solution
of (NDE). Let y be the solution of

{d@;i)+A y(t) +096(y(t) 3 k(t), 0<t<Ty,
y(0) = zo.
Then, since

d

21 @) —y(t) + A(z(t) - y(t)) + 0¢(2(1)) — 0g(y(t)) > f(t,z(t)),

by multiplying by z(t)—y(¢) and using the monotonicity of 8¢, we obtain

(313) 5 S1a(t) — yOF +wll=(t) - y(OI?

< wola(t) — y()* + L||z(t)]] |=(2) — y(t)].
By integrating on (3.13) over (0,t) we have
(3.14)

1
Sl (0 |2+w1/ la(s) — y(s)I1%ds

< 0@ +on [ lal)~u(o)Pds + 2 [ (o)l e(6) ~ vio)ds
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By the procedure similar to (3.11) the inequality

%lx(t) —y(t)] +w1/0 [lz(s) — ?/(S)szs

M2e2UJ2t 2
< e aomany

t s
+L [ eIl [ Lo fa(rlldr + e lg(e))ds
0 0

implies

%'-’B(t) - y(t)|2 +wy /0 ”CU(S) - y(s)”2ds

M?3e2w2t L2+ 2LM , o, 1
< "2_||z||2L2(0,To;V) + T(e%z © = DllellZz0mv)-
Put ,
1 L? M
N = (w — s M2e?2T) — L +2LM (e202To _1).
2 4LU2

Then it holds
lle = yllz20,m05v) < NY2|l| 20,1057
and hence, from (2.5) in Proposition 2.2, we have that
(3.15) 12| 20,7,V
1
< T wiza Wllzzo,mv)
< Ca(1 + |[zol| + Kl 2 (0,70;v+))

for some positive constant C4. Furthermore, acting on both side of
(NDE) by z'(¢) and by using

£6(a(0) = (9(0), 22(®), ae. 0<t,
for all g(t) € dé(z(t)), it holds
(3.16)

| W OF + 3(Ae(e), ) + 6(a(2)

< 5 (Azo,z0) + 9(ao) + [ 17(s,2(s) + k(a)| &' (5)lds,
0
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thus, noting that z € L?(0,Tp; V), we obtain the norm estimate of z in
W12(0, To; H) satisfying (3.3).

Since the condition (3.3) is independent of initial values, from the fact
that a solution x of (NDE) belongs to

L?(0,Ty; V) 0 C([0, To); HY n WH2(0, Ty, H),

and ¢(z(nTp)) < oo, we can solve the equation in [Ty, 27| with the
initial value z(Tp) and obtain an analogous estimate to (3.11). By pro-
ceeding this process, the solution of (NDE) can be extended the internal
[0,T7, i.e., for the initial z(nTp) in the interval [nTy, (n + 1)Tp] where n
is a natural number, as analogous estimate (3.11) holds for the solution
to the time T in [0, (n + 1)Tp). Furthermore, the estimate (3.2) is easily
obtained from (3.11) and (3.16). O

Finally, we also obtain the asymptotic property of solutions of (NDE)
as follows.

THEOREM 3.2. Let the assumptions (H1), (H2) and (H3) be satisfied
and (xo,k) € H x L?(0,T;H). Then the solution = of the equation
(NDE) belongs to x € L?(0,T;V)NC([0,T); H) and the mapping

H x L*(0,T; H) 3 (z0,k) — z € L*(0,T; V) N C([0, T); H)

is continuous.

Proof. 1f (zo,k) € H x L?(0,T; H) then z belongs to L2(0,T;V) N
C([0,T); H) form Theorem 3.1. Let (xo;, k;) € H x L?(0,T; H) and z;
be the solution of (NDE) with (z;,k;) in place of (xg,k) for i = 1, 2.
Multiplying on (NDE) by z1(t) — z2(t), we have
(3.17)

1d 2 2
5 2170 = 2 OP +wlln () - 220

< walz1(t) = 22(8)* + | f(t, 21(2)) — f (B, 22())] |21 (t) — 22(2)]
+ [k (2) = k2 ()] 1 (2) — z2(2)].

Put

H(t) = (Ll|z1(t) — z2(l] + [k1 (2) — k2 (D)])]21(2) — 22(2)).
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Then, by the similar way to (3.9) we have

w2/0 |z1(s) — z2(s)|?ds < %(CZM — 1)(|zo1 — o2|? + |g(z1) — 9(x2)|?)

t
+ / (e*2(t=9) _1)H(s)ds.
0

Combining this and (3.17) it holds that

(3.18)

ph1(0) = ) +en [ llea(s) — wao)Pds

t
< e (|zo1 — zoal® + 9(21) — 9(22) ) +f (=) H(s)ds.
0

(RN

By Lemma 3.1, we obtain

(3.19)
e 2t 31 (t) — 22(t)| < |zor — To2| + |g(z1) — g(2)]

+/ e™#2*(Ll|z1(s) — z2(s)l| + [k (s) — ka(s)|)ds.
0

Thus,

H(t) < (Ll|z1(t) — z2(0)||
+ |1 (t) — k2(t)])e“?* (|Jzor — Zoz| + g(z1)=~ g(z2)])

4 /t e“2(E=9) (L||z1(s) — z2(8)|| + |k1(s) — ka(s)|)ds.
0

Let T1 < T be such that

2 2w, T
w1 — %M2e2“’2T1 — _L_(e2w2T1 -1) - LMe“"’Tl(e w2l 1]

1/2
2(.U2 2w2 ) > 0.
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From (3.18) and (3.19) it follows that
(3.20)

311(0) — 22O + o [ lls(6) = aa(o) s

IA

1 1
562W2t|9§01 — zoa|* + §M262W2t”$1 - x2||2L2(0,T1€V)

+/0 22 (=) (L1 (s) — z2(s)|| + |k1(s) — ka(s)])
- 2% (|zo1 — zo2| + |g(z1) — g(x2)|)ds

+/ 22 t=9) (L| |z, (s) — z2(s)]| + |k1(s) — ka(s)])
0

' /o 2= (L||z1(7) — 2a(7)|| + |ka () — ka(7)|)drds.

The third term of the right of (3.20) is estimated as

(22t —1) [* 2 2
G2y o [ 219 - alo)IP + ha(o) — ka(o) ).
W9 0
We can choose a constant ¢ > 0 such that

1M2 2wo T L ( 2w T 1)
w1 5 e 2(.4.)2 €

eszTl - 1

— LMe~?Ti( )12 — cLe*2™ > 0

2(.4)2

and
1 c
lror — woz| [lx1(s) — z2(s)|| < lem — 202l + §l|$1(5) — za(s)| .

Thus, the second term of the right of (3.20) is estimated as

(3.22)

62(4)2 T1 — 1
4dew

Ty
+ 62w2T1§ /(; (LHCC1(3) _ mZ(S)Hg + lkl(S) - kZ(S)lz)dS

|$01 - $02|2
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e2w2T1
+ LMe? T (———
2w2

T
c
+ Le?w2T1 5/0 llz1(s) — xg(s)H2ds

_11/2 Tl:rs—mszs
) /0||1<> 2(s)|Pd

T1 1
+ / —62w2(t—s)|k1 (S) — k2(3)|2ds.
o L

Hence, from (3.20) to (3.22) it follows that there exists a constant C > 0
such that

T
(3.23) 21 (T1) — 22(TV)[? + /0 21(5) — a(s)| 2ds
Ty
< C(|z01 — z0al® + / Ik1(s) — ka(s)[ds).
0

Suppose (Zon, kn) — (g, k) in H x L2(0,Ty;V*), and let z, and z
be the solutions (NDE) with (zon,kn) and (o, k), respectively. Then,
by virtue of (3.23), we see that z, — =z in L?(0,71,V) N C([0,T1}; H).
This implies that z,(T}) — «(T3) in H. Therefore the same argument
shows that z,, — x in

L*(Ty, min{2Ty, T}; V) N C([T1, min{2Ty, T}]; H).

Repeating this process, we conclude that z, — =z in L2(0,T;V) N
c([o,T); H). ]

4. Example

Let Q be a bounded domain in R™ with smooth boundary 0€2. We
take V = W, (), H = L*(R). Let a;; be a real valued function for
each 4,5 = 1,... ,n. Assume that a;; = a;; are continuous and bounded
on  and {a;;(x)} is positive definite uniformly in €, i.e., there exists a
positive number ¢ such that

(4.1) > ai(@)&; > 8¢
ij=1

for all £ € Q and all real vectors £&. Let b; € L®°(Q) and ¢ € L®(Q).
Put 3; = Z?zl da;;/8z; + b;, then B € L>(Q). For each u,v € V, we



Nonlinear variational evolution inequalities 663

put
(4.2) a(u,v) = /{Z @ij 5 Ou Bv Zﬂl T + cub}dz.
,5=1

Since a;; is real symmetric, by (4.1) the inequality

n

(4.3) Z 2)GiGj > SI¢P?

bolds for all complex vectors ¢ = ((1,...,(s). On the other hand, by
this hypothesis, there exists a certain number K such that |3;(z)| < K
and |¢(z)| < K hold almost everywhere. Hence,

alu,v 8“2 - “—‘—'U/.’L'_ 2
Real )>/52| e K/D Julds — K [ fuPda
>5/Z|‘9“|2d —K/Z;ggz 21|u12)d:v

- K/ |u|?dz

6——K Z/|a$112d - 315+K)/9|u12dx.

By choosing € = § K1, we obtain

Rea(u,v) Z/| |2d - ——|—K /|u|2da:

= Sl - OB k4 Dyl

Let z € L?(0,T';V) for T’ < T and x(s) be defining function of [0,7"].
Theorem 3.1 can be applied for g : [0, )P x L%(0,T';V) — H defined
by the formula

g\liy..., Dy _i=l lz b1, I\Y1) X 1+|x(s)—m0| S,
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where [; > 0( = 1,...,p) are constants such that 0 < t; —l; < t; <
tg < -+ < tp < Tand t,_1 < t; —l,(l = 2,3,... ,p) and hi(t,s) is
measurable function from R x R into R such that

t
ess sup{/ |hi(t, s)|%ds : t > 0}% =C<o0, 1=1,...,p
0

Then by using the Hélder inequality it holds that

lg(z) — g(y)|

/tt hats, )x(s) (L + 2ly(s) = moDl(s) = y(s)|
we (+[a(s) = @) (L + Ty(s) — ]

Q

<

Mﬁ
N' =

1,11

t;

2h i(ts, $)x(8)|2(s) — y(s)lds

IA
Mn
S~ =

1 Jt;—

C\/ZZ

L. [|a — 3/”1,2(0 T:V)>
i

s
I
A

ji M:

and hence, the assumption (H2) holds. Thus, if

5 — {Z C‘/— (25 + K+ - )T)}2>O

the equation (NDE) has a unique solution in
L2(0,T; Wy 2(Q)) N C([0, T}; L2(2)) nWh2(0, T; LA(Q)).
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