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FREE HOMEOMORPHISMS OF
TWO DIMENSIONAL MANIFOLDS

JONG-JIN PARK

ABSTRACT. M. Brown [2] posed an open question on the class of
free homeomorphisms as follows: if f is a free homeomorphism of
two manifold and k s a positive integer then is f* free? In this
paper we show that the answer of the open question is true.

1. Introduction

The class of free homeomorphisms has been introduced and studied
by M. Brown in [1, 2], and then other of mathematicians developed the
theory of free homeomorphisms.

In particular, E. Slaminka [5] proved a generalization of the Brouwer
translation theorem using the concept of free homeomorphisms as fol-
lows:

THEOREM 1. Let h be a free homeomorphism of the two sphere S?
with finite fixed point set F. Then each point p € S? \ F lies in the
image of an embedding ¢, : (R?,0) — (S? \ F, p) such that

1) hop, = ¢7, where 7(z) = z + 1 is the canonical translation of the

plane,
2) the image of a vertical line under ¢, is closed in S?\ F.
Moreover G. Lucien [3] extended the Brouwer plane translation the-
orem using the notion of free homeomorphisms as follows:

THEOREM 2. Let h be a free homeomorphism of the two sphere S2
with a finite fixed point set F. Then each point p € S\ F lies in the
image of an embedding ¢, : (R%,0) — (S%\ F, p) such that

1) h¢p = ¢p7, where 7(z,y) = (z + 1, y),
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2) on each line z x R, ¢, restricts to a proper embedding,
ie., ¢p(x x R) is closed in S\ F.

The purpose of this paper is to give an affirmative answer to the
following open question posed by M. Brown in [3]: Suppose f is a free
homeomorphism of two-manifold M and k is a positive integer. Is f*
free homeomorphism?

For this purpose, we let. M be a connected two dimensional manifold.
For any subset N of M, we denote N by the boundary of N and intN
by the interior of N.

A homeomorphism f of M is called free homeomorphism provided
that whenever D is a disk in M and f(D)ND = ¢ then fP(D)NfI(D) =
¢ whenever p,q are distinct integers.

We denote the fized point set of f by F' = Fiz(f). If x € M then the
orbit of x is the set {f*(z)|i € Z}.

f is said to be a locally free homeomorphism of M provided that for
each x € M\ F, there exists a disk D, containing z in its interior(relative
M) such that fP(D;) N f9(D,) = ¢ whenever p, q are distinct integers.
It is clear that if a homeomorphism f on M is free then it is locally free.
But the converse does not hold in general.

Let f be a homeomorphism of M. An arc(= [0,1]) a = pq is called a
translation arc for f if

f(p) = qand f(a\{g}) N (a\{q}) = ¢.

A homeomorphism f is said to have the translation arc property provided
that whenever a = pg is a translation arc for f

ffle\{ghn(a\{g})=¢

for all n > 1. The set L, = U2 _  f*(a) is homeomorphic to the real
line R! by Lemma 2.3 in the following section.

We call L,, a translation line for f generated by the translaton arc c.
Brouwer introduced the notion of the translation arc and proved that a
fixed point free orientation preserving homeomorphism of the plane has
the translation arc property.

For a sequence {A,} of subsets of M, we define the set limsup A, [4]
by

limsup A, = {z € M| for each neighorhood U of z,
U intersects infinitely many of the sets A,}.
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2. Main theorem

MAIN THEOREM. If f is a free homeomorphism of M then f* is also
a free homeomorphism on M for any k € N.

REMARKS. The inverse of the above main theorem does not hold in
general. In fact, let f : $2>——S5? be a homeomorphism defined by

f(\/l——§COSG, V1 - 22sin#, z)
:(\/T——zicos(e +7/2), \/T—?Sin(ﬁ +7/2), 2).
Then it is clear that f is not free, but f* is free.
To prove our main theorem we need several lemmas.

LEMMA 2.1. ([4], Lemma 3.1) Let f be a free homeomorphism of M.
Then if C is a continuum and C N f(C) = ¢ then fP(C) N f4(C) = ¢
whenever p # q.

LemwmA 2.2. ([4], Lemma 4.1) Let f be a homeomorphism of M. If z
and f(z) are in the same component of M \ F then there is a translation
arc from z to f(zx).

LEMMA 2.3. ([4], Lemma 4.7) Let f be a free homeomorphism of M
and let L be a translation line for f. Then L is a homeomorphic to the
real line R*.

LEMMA 2.4. ([4], Lemma 4.8) Let f be a free homeomorphism of
M and let L be a translation line for f. Then f does not (locally)
interchange the two sides of L.

LEMMA 2.5. Let f be a locally free homeomorphism of M. If N is a
compact subset of M and F is the fixed point set of M, then for each x
in M, limsup f*(z) N (N \ Fy) = ¢ where Fy = FNN.

PrROOF. Let U be an open subset of Fy in M. ThenN \ U is a
compact subset of M. By the compactness of N \ U, there exists a finite
collection {D;} of disks covering N \ U such that for each i,

fP(Di) N fU(Ds) = ¢,
whenever p,q are distinct integers, since f is a locally free homeomor-
phism. Let £ € M. Then the orbit of z can intersect each D; at most
once; i.e.,

ft(x) € M\ (N\U)
for all but a finite number of values of n. O
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COROLLARY 2.6. For each translation arc a = pq inM ,

limsup f*(a) N (N \ Fn) = ¢.

Now we introduce the concept of the h-disk which allows certain
holes, and then we extend some properties of the disk to those of h-disk
using the method of M. Brown [3]. We say that a subset G of M is a
generalized disk in M if it is a homeomorphic to a subset of D which
contains intD, where D = {(z,y) € R?|z? + % < 1}.

DEFINITION 2.7. A subset H of M is called an n-disk, n € N, in M
if there are generalized (n+1)-disks Gy, - ,Gny1 such that

1) GicmtGyforalli=2,--- ,;n+1
9) GiNGj=¢ifi,j>1andij
3) H=G1\ (UIHGy)

We denote OH by the boundary of the disk G;. We say that a subset
H of M is h-disk in M if it is an n-disk in M for some n € N.

LeEMMA 2.8. Let f be a homeomorphism of M and H a h-disk in M.
If there exists t € N such that f*(H) C H \ 8H then f is not free.

PROOF. We suppose that ¢t > 1 and f(H)NH = ¢. Takex € OH. Let
a be an arc from z to fi(z) in the set int(H \ f¢(H)) U {z, f(z)}. Then
f(e)Na = ¢ and aN fi(a) contains the point f*(z). Hence f is not free
by Lemma 2.1.

Suppose f(H) N H # ¢. Take x € 6H \ f(f(H) N H) and let o be
an arc from z to fi(z) in the set int(H \ fi{(H)) U {z, fi(x)} satisfying

« N[ (H) N H)| = ¢ or a1 (F(H) N H) = 6.

Then f(a) Na = ¢ and f'(a) N« contains the point f{(x). Hence f is
not free by Lemma 2.1.

Now we suppose that ¢ = 1. Then it is proved by Lemma 5.2 in
[2]. |

If we apply the same techniques by M. Brown in [2], we obtain the
following Lemmas: 2.9, 2.10 and 2.11. So we will omit the proof.

LEMMA 2.9. Let f be a locally free homeomorphism of M and H a h-
disk in M. If there exists a natural number t € N such that f{(H)yc H
and f has no fixed point on OH, then for each x € OH, there is an
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unique integer N > 1 such that

. OH 1<i<N
1t ] P
fiz) € {H\5H, i>N.

LEMMA 2.10. Let f be a locally free homeomorphism of M and H a
h-disk in M. If there exists a natural numbert € N such that f'(H) C H
and f has no fixed point on OH then there is a smallest number N > 1
such that fNY(H) C H\OH.

LEMMA 2.11. Let f be a locally free homeomorphism of M and H a
h-disk in M. If there exists a natural number ¢ € N such that f{(H)C H
and f has no fixed point on OH then there exists an h-disk E in M such
that f'(E) C E\OE.

Now to prove our main theorem, we denote an arc § from z to y in
X(C M) by B=zy(X).

PROOF OF THE MAIN THEOREM. Suppose k > 2, and let D be a
disk in M. If f(D)N D = ¢ then the proof is clear. So we suppose

(1) fA(D)ND =¢ and f(D)ND # ¢

for all 1 < i < k. To derive a contradiction, we suppose that f* is not
free. Then there exist positive integer p, g with p < q satisfying

(2) (DN f*(D) # ¢
Let r = kq \ kp. Then we can see that » > k. In fact, if r = k then
g = p+ 1. Take a point z in the set f*7(D) N f*9(D). Then we have
f~*(=z) € f*(D) and f7*(F7%(2)), f*(2) € D.
Hence we get

FE(f8(2)) e D andso fH(D)N D # ¢,
This is a contradiction such that r > k.

Since f*?(D) N k(D) # ¢ by (2), we take a point z in f*(D) N
fF(D). Let y = f~"(z). Then the set f*(D) contains the points y, z.
If we apply Lemma 2.2 then we can choose an arc « from y to f(y) in
M. Put

L=Uzlof"(a).
Then the set [f*(D) N L] contain the point y, z. Choose an arc 7 from
y to z in f*P(D). Then we have the following cases.
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First we have two cases:
yOL={y, z}or yNL#{y, z}.
If yNn L # {y, 2z}, then we have two cases:
~N L is a finite set or yN L is an infinite set.
If vy N L is a finite, then we have two cases:
YN [URZef (@) = {y, 2} or yN[UZ5f" ()] # {y, 2}-
If yN[UT_4f™(@)] # {y, 2}, then we have two cases:

YN UL (@) =2z or yN[ULf(a)] # 2.
For each case, we will show that f is not free. Then the contradiction
completes the proof of our theorem.
Case 1:
e YyNL= {yv Z}
Let E be bounded by yU [Un—o f™(@)]. Then E is an h-disk and

Une, . fMa)CE or U2, ffla)NE==2

(see Figure 1 or 2), since L is homeomorphic to a ray of a real line

R!(see Lemma 2.3).
Let US2, f*(a) C E (see Figure 1). Then since

(D) n FFP+HY(D) = ¢ and r > k,

there exists some 4, 1 < i < r, such that fi(y) N~y = ¢, and so by
Lemma 2.4, fi{(E) C E. But since f has no fixed point on 0E by
Lemma 2.11 and 2.8, f is not a free homeomorphism.

Let U2, f*(a) N E = z (see Figure 2). Then by Lemma 2.4, for all

n=r
i, 1<i1<r—1,

finny#4¢
since fi(y) € E and fi(z) ¢ E. But since k <r —1,

(D) (D) £ ¢

and f is not a free homeomorphism.
Case 2:

e yNL#{y, 2},
e vN L is a finite set, and

o YN[ U5 (a)] = {y, 2}.
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FiGcure 1

Then there exists a point ¢ in 7 such that
yt(7) NUsLof™(@) = {y, t} and so t # 2.
And there exists j, 7 — 1 < j < oo, such that
te {f )\ )}
Let E' be bounded by yt(y) Uyt(L). Then E' is an h-disk and
FH(y) € B or f7(y) ¢ E'.
By the proof of Case 1, f is not a free homeomorphism.
Case 3:

e YyNL #{y, z},
e yN L is a finite set, and

o YN[UZhS™(0)] # {v 2}

Let y =to, t1, -+ ,t, = 2z be points in yNyz(L) such that
’Yﬂytz(L) = {y)tly 7t’i}7 i = 1a , N
(see Figure 3). If there are ¢, t,,, in {y, t1, -, tn—1, 2} such that

t;tjn(r)/) n {ya tl, T 7tn——la Z} = {tsa tm}
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FIGURE 2

and t:En(L) contain more than k 4+ 1 points of the orbit of y, then
we consider an h-disk E” bounded by tstm(y) Utstm(L). Then by the
proof of Case 1,

FE(Estm (7)) N Estm(y) # &.

Hence
(D) N P (D) # ¢
and f is not a free homeomorphism.
—~—Fk

If there exists a ¢; in [{y,t1, -+, ta—1, 2} Nyf (2)(L)] such that

fE(t;) € 7, then also
Fny#¢

and it is a contradiction.

Now we assume that for each pair ¢g, ¢, in {y, t1,---, th~1, 2} sat-
istying

tst'm(’)’) N {y> tla R tn—la Z} = {tS7 tm}7

fstm(L) contain less than k points of the orbit of y and

for each t; € [{y, t1, -+ , tn-1, 2} ﬂ?;.\f_k(z)(L)], ) .
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Let E; be (locally) one side of v such that yt1(L) C E1 U~ and let
E5 be (locally) the other side of v (see Figure 3).
If

Fly t, oty 2D NTEL)NE # ¢, 1= 1, 2,
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then
YO # ¢
and also
f¥(D) N fFe+D(D) # 4.
Case 4:

e yNL#{y, 2},
e yN L is a finite set,

o YN [U,Z6f™@)] # {y, 2}, and

o YN [URL, f(a)] = 2.

We use the notations and their meanings of the assumption of the
proof of Case 3. Let

FFly, t1, -+ s tamr, 2) NGE(L) N EL = 6.
If f~%(z) € E,, then there exist two points w, w’ in {y, t1, - -, tn_1,
z } such that
F7M(z2) € ww (L), ww!(L) Ny = {w,w'} and v & F(y).
Since
f¥(w) € By and f*(574(2)) € v,
by Lemma 2.4,
f’“(@('y)) N~y # ¢ (see Figure 3).

Now let f~*(z) € E;. Then we consider some points of the orbit
of f¥(y) in yf~*(2)(L) N By as {f*(y),---, f~*(2)}. We can choose a
point f™(y) in [{f?*(y), ---, f7%(2)} N E1] such that

{fk(y)a T fk(n_l)(y)} n El = ¢7

since f~%(z) € E,. Thensince f¥(y) € Es, there exist two points w, w'’
such that

4 (y) € w (L), ww (L) Ny = {w, '} and v’ & G (7).
Since f™(y) € E; and f*(w), f¥(w') in E;, by Lemma 2.4,
() Ny # ¢,
Let
fk({y’ tla Tty t'n—la z }) n:.l//E(L) N E2 = ¢
By the same techniques as above, we can easily check that f is not free.
Case 5:

e yNL#{y, 2},
e vN L is a finite set,
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o yN[U—of™(@)] # {y, 2}, and

o YN [URL, [ ()] # 2.

We can prove the case by the similar methods of the proof of Case 4.
Case 6:

e vN L is an infinite set.

Then « contains a point of limsup f"(«). By Corollary 2.6, v con-
tains a fixed point and so

(D) N AP (D) # ¢
Therefore f is not a free homeomorphism for all the cases. This
completes the proof. O
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