DIMENSION OF DEFORMED SELF-SIMILAR SETS

TAEHEE KIM, JUNGJU PARK AND HUNGHWAN LEE

ABSTRACT. We generalize S. Ikeda's results for perturbed cantor sets showing how we get the dimensions for deformed self-similar sets.

1. Introduction

In [5] we define deformed self-similar sets. The construction of these sets go as follows. For more details (see [4], [5]).

Put X = [0,1]. Fix $m \geq 2$, write $S_k = \{1,2,\cdots,m\}^k$ and $S^* = \bigcup_{k=1}^{\infty} S_k$. Consider a sequence of similarities $\{\phi_{\sigma}: X \to X | \sigma \in S^*\}$. Suppose that each ϕ_{σ} has a contraction ratio r_{σ} , that is, $|\phi_{\sigma}(x) - \phi_{\sigma}(y)| = r_{\sigma}|x-y|$ for any $x,y \in [0,1]$, where $|\cdot|$ is the Euclidean norm. We further assume there exists $0 < \alpha, \beta < 1$ such that $\alpha < r_{\sigma} < \beta$ for any $\sigma \in S^*$ and $\phi_{i_1 i_2 \cdots i_{k-1} i_k}(X) \cap \phi_{i_1 i_2 \cdots i_{k-1} i_{k'}}(X) = \emptyset$ if $i_k \neq i'_k$. For brevity, we write

$$\Phi_{\sigma} \equiv \phi_{i_1} \circ \phi_{i_1 i_2} \circ \cdots \circ \phi_{i_1 i_2 \cdots i_k}$$

$$R_{\sigma} \equiv r_{i_1} r_{i_1 i_2} \cdots r_{i_1 i_2 \cdots i_k}$$

for any $\sigma = i_1 i_2 \cdots i_k \in S_k$ and write $|\sigma| = k$ if $\sigma \in S_k$. Then we obtain an unique compact set K,

$$K = \bigcap_{k=1}^{\infty} \bigcup_{|\sigma|=k} \Phi_{\sigma}(X).$$

We call this set K a deformed self-similar set on [0,1]. We note that K is a generalized Cantor set since K is a loosely self-similar set ([2]) if we take $r_{\sigma j} = r_j$ for all σ and that K is a perturbed Cantor set ([3]) if we append the following condition to the sequence of similarities

Received August 1, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 28A78.

Key words and phrases: Hausdorff dimension, packing dimension, deformed self-similar set.

 $\{\phi_{\sigma}: X \to X | \sigma \in S^*\}$; for $\sigma = i_1 i_2 \cdots i_n$ and $\tau = j_1 j_2 \cdots j_n$, there exists $\delta > 0$ such that

$$\operatorname{dist}(\Phi_{\sigma}(X), \Phi_{\tau}(X)) \ge \delta \max(r_{\sigma}(X), r_{\tau}(X))$$

if
$$i_k = j_k (k = 1, 2, \dots, n - 1)$$
 and $i_n \neq j_n$.

Now we show how to calculate the dimensions of the deformed self-similar sets. We note that it works for perturbed cantor sets.

2. Hausdorff dimension of a deformed self-similar set

We begin to recall the definition of the Hausdorff measure and dimension ([1]). In this paper, we write |A| for the diameter of A. Let E be a bounded subset of \mathbf{R} and $s \geq 0$.

$$H^s(E) = \lim_{\delta \to 0} H^s_{\delta}(E)$$

where

$$H^s_{\delta}(E) = \inf\{\sum_{i=1}^{\infty} |U_i|^s : E \subset \cup_i U_i, |U_i| \le \delta\}.$$

The Hausdorff dimension of E is defined by

$$\dim_H E = \sup\{s \ge 0 : H^s(E) = \infty\} = \inf\{s \ge 0 : H^s(E) = 0\}.$$

In [5], we define a new metric outer measure M^s ;

$$M^s(E) = \lim_{n \to \infty} M_n^s(E)$$

where

$$M_n^s(E) = \inf\{\sum |\Phi_{\sigma}(X)|^s : E \subset \cup_{\sigma} \Phi_{\sigma}(X), |\sigma| \ge n\}.$$

The following lemma tells us that we may use M^s -measure to get the Hausdorff dimension of deformed self-similar sets.

LEMMA 1. [5] Let K be a deformed self-similar set. Then

$$\dim_H K = \sup\{s \ge 0 : M^s(K) = \infty\} = \inf\{s \ge 0 : M^s(K) = 0\}.$$

For simplicity, we denote $\Phi_{\sigma}(x)$ for $\Phi_{\sigma}(X)$ containing x.

THEOREM 2. Let K be a deformed self-similar set. Suppose that there exists a finite Borel measure ν with supp $(\nu) \subset K$ and $d \in (0,1)$ such that if for any $x \in K$

$$\lim_{k \to \infty} \sup_{|\sigma| > k} \frac{\nu(\Phi_{\sigma}(x))}{|\Phi_{\sigma}(x)|^s} = 0 \quad \text{ for any } s < d.$$

Then

$$d \leq \dim_H K$$
.

PROOF. Since $\limsup_{k\to\infty}\frac{\nu(\Phi_{\sigma}(x))}{|\Phi_{\sigma}(x)|^s}=0$ for any s< d and for any $x\in K$, there exists n such that $\nu(\Phi_{\sigma}(x))<|\Phi_{\sigma}(x)|^s$ for $|\sigma|\geq n$ and $x\in K$. For any $\rho>0$, let

$$K_{\rho} = \{x \in K : |\Phi_{\sigma}(x)| \ge \rho \text{ or } \nu(\Phi_{\sigma}(x)) < |\Phi_{\sigma}(x)|^s \text{ for any } \Phi_{\sigma}(x)\}.$$

Then K_{ρ} increases to K as $\rho \to 0$ and there exists $\rho > 0$ such that $\nu(K_{\rho}) > 0$ since $\nu(K) > 0$.

For any $\varepsilon > 0$ and some $n \in \mathbb{N}$ with $\beta^n \leq \rho$, there exists a cover $\{\Phi_{\sigma}(x)|x \in K_{\rho}\}$ of K_{ρ} such that $|\sigma| \geq n$ and $\sum |\Phi_{\sigma}(x)|^s \leq M_n^s(K_{\rho}) + \varepsilon$ by definition of M_n^s . Hence for given $\varepsilon > 0$,

$$M_{n}^{s}(K) + \varepsilon \geq M_{n}^{s}(K_{\rho}) + \varepsilon$$

$$\geq \sum |\Phi_{\sigma}(x)|^{s}$$

$$> \sum \nu(\Phi_{\sigma}(x))$$

$$\geq \nu(\bigcup \Phi_{\sigma}(x))$$

$$> \nu(K_{\rho}).$$

Since ε is arbitrary, $M_n^s(K) \ge \nu(K_\rho) > 0$. Therefore $M^s(K) > 0$ for any s < d. This implies $d \le \dim_H K$ by Lemma 1.

THEOREM 3. Let K be a deformed self-similar set. Suppose that there exists a finite Borel measure ν with supp $(\nu) \subset K$ and $d \in (0,1)$ such that if for any $x \in K$

$$\lim_{k \to \infty} \sup_{|\sigma| \ge k} \frac{\nu(\Phi_{\sigma}(x))}{|\Phi_{\sigma}(x)|^s} = \infty \quad \text{ for any } s > d.$$

Then

$$\dim_H K \leq d$$
.

PROOF. Since $\limsup_{k\to\infty}\frac{\nu(\Phi_{\sigma}(x))}{|\Phi_{\sigma}(x)|^s}=\infty$ for any s>d and for $x\in K$, we have that $|\Phi_{\sigma}(x)|^s<\nu(\Phi_{\sigma}(x))$ for infinitely many σ and any $x\in K$. For any $\rho>0$, let

$$\mathcal{C}_{\rho} = \{\Phi_{\sigma}(x) : x \in K, |\Phi_{\sigma}(x)| \le \rho \text{ and } |\Phi_{\sigma}(x)|^s < \nu(\Phi_{\sigma}(x))\}.$$

Then C_{ρ} becomes a Vitali covering of K, and then by the Vitali covering theorem, there exists a countable disjoint sequence $\{\Phi_{\sigma_i}(x_i)\}$ from C_{ρ} such that $M^s(K \setminus \bigcup_{i=1}^{\infty} \Phi_{\sigma_i}(x_i)) = 0$ since $M^s(K) < \infty$ (see [5]).

We see $M^s(E) = \lim M_n^s(E)$, so for any $\varepsilon > 0$, we take n_o such that $M^s(E) - \varepsilon \leq M_{n_o}^s(E)$. And put $\rho = \alpha^{n_o}$. Then for some countable disjoint sequence $\{\Phi_{\sigma_i}(x_i)\}$ from \mathcal{C}_{ρ} with $M^s(K \setminus \bigcup_{i=1}^{\infty} \Phi_{\sigma_i}(x_i)) = 0$ we get

$$\begin{split} M^s(K) - \varepsilon & \leq & M^s_{n_o}(K) \\ & \leq & M^s_{n_o}(K \cap \bigcup \Phi_{\sigma_i}(x_i)) + M^s_{n_o}(K \setminus \bigcup_{i=1}^{\infty} \Phi_{\sigma_i}(x_i)) \\ & \leq & M^s_{n_o}(\bigcup \Phi_{\sigma_i}(x_i)) + M^s(K \setminus \bigcup_{i=1}^{\infty} \Phi_{\sigma_i}(x_i)) \\ & \leq & \sum |\Phi_{\sigma_i}(x_i)|^s \\ & \leq & \sum \nu(\Phi_{\sigma_i}(x_i)) \\ & = & \nu(\bigcup \Phi_{\sigma_i}(x_i)) \\ & \leq & \nu(\mathbf{R}). \end{split}$$

Since ε is arbitrary, we have $M^s(K) \leq \nu(\mathbf{R}) < \infty$ for any s > d. Thus $\dim_H K \leq d$ by Lemma 1.

3. Packing dimension of a deformed self-similar set

Let's begin with recalling the packing classes for a bounded E of \mathbb{R} ([7]). Let C_0 stand for the class of all countable families of disjoint balls $\{B_i(x_i)\}$ with their centers $x_i \in E$ and C_1 stand for the class of all countable families of disjoint open balls $\{B_i\}$ with $\overline{B_i} \cap \overline{E} \neq \emptyset$.

For each i, $\{I_{i_n}\}$ is called C_i -type δ -packing of E if $\{I_{i_n}\} \in C_i$ with $|I_{i_n}| < \delta$, for arbitrary i_n . For $s \ge 0$, put

$$P_i^s(E) = \limsup_{\delta \to 0} \{ \sum |I_{i_n}|^s : \{I_{i_n}\} \text{ is a \mathcal{C}_i-type δ-packing of E} \}, i = 0, 1$$

$$p_i^s(E) = \inf\{\sum P_i^s(E_n) : E_n \text{ is bounded and } E = \bigcup E_n\}, i = 0, 1.$$

Then $p_i^s(E)$ is a metric measure. Usually we call $p_0^s(E)$ the s-dimensional packing measure of E. For any bounded $E \subset \mathbf{R}$,

$$\mathcal{C}_i\text{-}\mathrm{Dim}E\equiv\sup\{s>0:p_i^s(E)=\infty\}=\inf\{s>0:p_i^s(E)=0\}.$$

It is well known that

and

$$Dim E \equiv C_0 - Dim E = C_1 - Dim E$$

where Dim E is the packing dimension of E.

Before we go to our main result, let's put an easy but useful property for packing measure.

LEMMA 4. [7] Let E be any subset of a bounded set K. Then

$$p_i^s(E) = \inf\{\lim_{n \to \infty} P_i^s(E_n) : E_n \uparrow E\}, i = 0, 1.$$

In [4], we used an auxiliary packing measure of K to get the packing dimension of K. This goes as follows; $\{\Phi_{\sigma}(x)\}\$ is called \mathcal{C}_2 -type δ -packing of $E \subset K$ if it satisfies

(1)
$$\Phi_{\sigma}(x) \cap \Phi_{\sigma'}(x') = \emptyset$$
, for any $\sigma \neq \sigma'$ and $x, x' \in E$
(2) $|\sigma| \geq n$, for $n \geq \frac{\log \delta}{\log \beta}$

$$(2) \ |\sigma| \ge n, \, \text{for} \, \, n \ge \frac{\log \delta}{\log \beta}$$

(3) $\Phi_{\sigma}(x) \cap \overline{E} \neq \emptyset$.

For s > 0, put

$$P_2^s(E) = \lim_{\delta \to 0} \sup \{ \sum |\Phi_{\sigma}(x)|^s : \{\Phi_{\sigma}(x)\} \text{ is a \mathcal{C}_2-type δ-packing of E} \}$$
 and

$$p_2^s(E) = \inf\{\sum P_2^s(E_n) : E_n \text{ is a bounded and } E = \cup E_n\}.$$

The following lemma says that we may use the above p_2^s measure to get the packing dimension of deformed self-similar sets.

LEMMA 5. [4] Let K be a deformed self-similar set. Then for $D \subset K$,

$$p_2^s(D) \le p_1^s(D)$$

and

$$p_0^s(D) \leq (\frac{2}{\alpha})^s p_2^s(D)$$

where α is the number as in the introduction. In particular, we have

$$Dim K = \sup\{s > 0 : p_2^s(K) = \infty\}.$$

Now we calculate the packing dimension of K by using above lemmas. The idea is paralleling with those of Hausdorff dimension.

THEOREM 6. Let K be a deformed self-similar set. Suppose that there exists a finite Borel measure ν with supp $(\nu) \subset K$ and $d \in (0,1)$ such that if for any $x \in K$

$$\lim_{k \to \infty} \inf_{|\sigma| > k} \frac{\nu(\Phi_{\sigma}(x))}{|\Phi_{\sigma}(x)|^s} = 0 \quad \text{ for any } s < d.$$

Then

$$d \leq \text{Dim } K$$
.

PROOF. For $\varepsilon > 0$ there exists a sequence $\{K_n\}$ such that K_n increases to K and $\lim_{n \to \infty} P_1^s(K_n) < p_1^s(K) + \varepsilon$ by Lemma 4. We note that there exists n_o such that $\nu(K_{n_o}) > 0$ since $\nu(K) > 0$.

Since $\lim_{k\to\infty}\inf_{|\sigma|\geq k}\frac{\nu(\Phi_{\sigma}(x))}{|\Phi_{\sigma}(x)|^s}=0$ for any s< d and for any $x\in K$, it is true that $\nu(\Phi_{\sigma}(x))<|\Phi_{\sigma}(x)|^s$ for infinitely many σ and $x\in K$. For any $\rho>0$, let

$$\mathcal{C}_{\rho} = \{\Phi_{\sigma}(x) : x \in K_{n_{\sigma}}, |\Phi_{\sigma}(x)| < \rho \text{ and } \nu(\Phi_{\sigma}(x)) < |\Phi_{\sigma}(x)|^{s}\}.$$

Then C_{ρ} becomes a Vitali covering of K_{n_o} and by Vitali covering theorem there exists a countable disjoint sequence $\{\Phi_{\sigma_i}(x_i)\}$ from C_{ρ} such that $\nu(K_{n_o} \setminus \bigcup_{i=1}^{\infty} \Phi_{\sigma_i}(x_i)) = 0$. Here $\{\Phi_{\sigma_i}(x_i)\}$ is C_2 -type ρ -packing of K_{n_o} .

Therefore

$$0 < \nu(K_{n_o}) = \nu(K_{n_o} \cap \bigcup_{i=1}^{\infty} \Phi_{\sigma_i}(x_i)) + \nu(K_{n_o} \setminus \bigcup_{i=1}^{\infty} \Phi_{\sigma_i}(x_i))$$

$$\leq \nu(\bigcup \Phi_{\sigma_i}(x_i))$$

$$= \sum_{i=1}^{\infty} \nu(\Phi_{\sigma_i}(x_i))$$

$$< \sum_{i=1}^{\infty} |\Phi_{\sigma_i}(x_i)|^s$$

$$\leq P_2^s(K_{n_o}).$$

Hence we get $0 < \nu(K_{n_o}) < P_2^s(K_{n_o}) \le \lim_{n \to \infty} P_2^s(K_n) \le \lim_{n \to \infty} P_1^s(K_n) < p_1^s(K) + \varepsilon$ by Lemma 5. We conclude that $p_1^s(K) > 0$ for any s < d and Dim $K \ge d$.

THEOREM 7. Let K be a deformed self-similar set. Suppose that there exists a finite Borel measure ν with supp $(\nu) \subset K$ and $d \in (0,1)$ such that if for any $x \in K$

$$\lim_{k \to \infty} \inf_{|\sigma| > k} \frac{\nu(\Phi_{\sigma}(x))}{|\Phi_{\sigma}(x)|^s} = \infty \quad \text{ for any } s > d.$$

Then

Dim
$$K \leq d$$
.

PROOF. Since $\lim_{k\to\infty}\inf_{|\sigma|\geq k}\frac{\nu(\Phi_{\sigma}(x))}{|\Phi_{\sigma}(x)|^s}=\infty$ for any s< d and any $x\in K$, there exists n such that $\nu(\Phi_{\sigma}(x))>|\Phi_{\sigma}(x)|^s$ for any $|\sigma|\geq n$. Now for $\rho>0$, let

$$K_{\rho} = \{x \in K : |\Phi_{\sigma}(x)| \geq \rho \text{ or } |\Phi_{\sigma}(x)|^s < \nu(\Phi_{\sigma}(x)) \text{ for any } \Phi_{\sigma}(x)\}.$$

Then K_{ρ} increases to K as $\rho \to 0$. Hence for any $\delta > 0$

$$P_2^s(K_{\rho}) \leq \sup\{\sum |\Phi_{\sigma}(x)|^s : \{\Phi_{\sigma}(x)\} \text{ is a } \mathcal{C}_2\text{-type } \delta\text{-packing of } K_{\rho}\}$$

$$\leq \sup\{\sum \nu(\Phi_{\sigma}(x)) : \{\Phi_{\sigma}(x)\} \text{ is a } \mathcal{C}_2\text{-type } \delta\text{-packing of } K_{\rho}\}$$

$$= \sup\{\nu(\bigcup \Phi_{\sigma}(x)) : \{\Phi_{\sigma}(x)\} \text{ is a } \mathcal{C}_2\text{-type } \delta\text{-packing of } K_{\rho}\}$$

$$< \nu(\mathbf{R})$$

Therefore we get $p_0^s(K) \leq \lim_{\rho \to 0} P_0^s(K_\rho) \leq \left(\frac{2}{\alpha}\right)^s \lim_{\rho \to 0} P_2^s(K_\rho) \leq \left(\frac{2}{\alpha}\right)^s \nu(\mathbf{R}) < \infty$ for any s > d by Lemma 4 and Lemma 5. This implies that $\operatorname{Dim}(K) \leq d$.

References

- K. J. Falconer, Fractal geometry-Mathematical foundations and applications, Wiley, 1985.
- [2] S. Ikeda, On loosely self-similar sets, Hiroshima Math. J. 25(1995), 527-540.
- [3] S. Ikeda and M. Nakamura, Dimensions of Measures on perturbed Cantor set, accepted in Topology Appl.
- [4] T. H. Kim and H. H. Lee, Packing dimension for deformed self-similar sets, submitted in Korean J. Math. Soc.
- [5] T. H. Kim, S. P. Hong and H. H. Lee, The Hausdorff dimension for deformed self-similar sets, Hiroshima Math. J. 32 (2002), 1-6.
- [6] C. A. Rogers, Hausdorff measures, Cambridge Univ. Press, 1970.
- [7] S. J. Taylor and C. Tricot, The packing measure and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), 679-699.

Department of Mathematics Kyungpook National University Taegu 702-701, Korea E-mail: hhlee@knu.ac.kr