Thickness Effect on the Compressive Strength of T800/924C Carbon Fibre-Epoxy Laminates

T800/924C 탄소-에폭시 복합재판의 압축강도에 대한 두께 효과

  • Lee, J. (The University of Sheffield, Aerospace Engineering, Graduate School, U.K.) ;
  • C. Kong ;
  • C. Soutis (The University of Sheffield, Aerospace Engineering, U.K.)
  • Published : 2004.08.01

Abstract

In this study, the effect of laminate thickness on the compressive behaviour of composite materials is investigated through systematic experimental work using the stacking sequences, $[O_4]_{ns},{\;}[45/0/-45/90]_{ns}$ and $[45_n/0_n/-45_n/90_n]_s$ (n=2 to 8). Parameters such as fibre volume fraction, void content, fibre waviness and interlaminar stresses, influencing compressive strength with increasing laminate thickness are also studied experimentally and theoretically. Furthermore the stacking sequence effects on failure strength of multidirectional laminates are examined. For this purpose, two different scaling techniques are used; (1) ply-level technique $[45_n/0_n/-45_n/90_n]s$ and (2) sublaminate level technique $[45/0/-45/90]_{ns}$. An apparent thickness effect existes in the lay-up with blocked plies, i.e. unidirectional specimens ($[O_4]_{ns}) and ply-level scaled multidirectional specimens ($[45_n/0_n/-45_n/90_n]_s$). Fibre waviness and void content are found to be main parameters contributing to the thickness effect on the compressive failure strength. However, the compressive strength of the sublaminate level scaled specimens ($[45/0/-45/90]_{ns}$) is almost unaffected regardless of the specimen thickness (since ply thickness remains constant). From the investigation of the stacking sequence effect, the strength values obtained from the sublaminate level scaled specimens are slightly higher than those obtained from the ply level scaled specimens. The reason for this effect is explained by the fibre waviness, void content, free edge effect and stress redistribution in blocked $0^{\circ}$ plies and unblocked $0^{\circ}$ plies. The measured failure strengths are compared with the predicted values.

본 연구에서 복합재의 압축 강도에 대한 두께 효과가 $[0_4]_{ns},{\;}[45/0/-45/90]_{ns},{\;}[45_n/0_n/-45_n/90_n]_s$ (n=2 to 8) 등의 적층 방법을 이용하여 체계적인 실험을 통해 조사되었다. 여기서 섬유 체적비, 기공률, 섬유 굴곡도, 층간 응력 등, 적층 두께 증가에 따른 압축 강도에 영향을 주는 파라미터들이 실험과 이론적으로 연구되었다. 또한 엇교차 대칭 복합재판의 파괴강도에 대한 적층 순서 효과도 조사되었다. 이를 위해 2종류의 다른 스케일링 효과를 갖는 (1) 폰라이-레벨 기법인 $[45_n/0_n/-45_n/90_n]_s$과 (2) 서브라미네이트-레벨 기법인 $[45_n/0_n/-45_n/90_n]_s$가 적용되었다. 일 방향 적층 시편 $[0_4]_{ns}$과 플라이-레벨인 $[45_n/0_n/-45_n/90_n]_s$에는 분명한 두께효과를 나타내었다. 그리고 섬유 굴곡도와 기공률의 두께효과에 기여하는 주요 파라미터 들임이 확인되었다. 그러나 서브라미네이트-레벨인 $[45/0/-45/90]_{ns}$의 압축강도는 시편 두께의 변화에도 불구하고 별 영향을 나타내지 않았으면, 서브라미네이트- 레벨 시편에서 구한 강토가 플라이-레벨 시편에서 구한 강도보다 약간 높았다. 이 같은 효과에 대한 이유는 섬유 굴곡도, 기공률, 자유단 효과 및 $0^{\circ}$층과 비 $0^{\circ}$층 사이의 응력 재 분포에 의한 영향인 것으로 보인다. 측정된 파괴강도는 예측 값과 비교되었다.

Keywords

References

  1. Composite Materials:Fatigue and Fracture(Third Volume), ASTM STP 1110 Compression Testing of Thick-Section Composite Materials Camponeschi, E.T.
  2. International Journal of Fracture v.95 no.Special Issue Is There a Thickness Effect on Composite Laminates? Daniel, I. M.;Hsiao, H. M. https://doi.org/10.1023/A:1018692032303
  3. Journal of Composite Materials v.29 no.13 A New Compression Test Methods for Thick Composites Hsiao, H. M.;Daniel. I. M.;Wooh, S. C. https://doi.org/10.1177/002199839502901307
  4. Proceedings, 1987 Spring Conference on Experimental Mechanics Experimental Evaluation of Graphite/Epoxy Composite Cylinders Subjected to External Hydrostatic Compressive Loading Garala, H. J.
  5. International Journal of Fracture v.95 no.Special Issue Size Effect on Compression Strength of Fibre Composites Failing By Kink Band Propagation Bazant, P. Z.;Kim, J. H.;Daniel, I. M.;Emilie, B. G.;Zi, G. https://doi.org/10.1023/A:1018640015465
  6. PHD thesis, University of Cambridge Compressive Failure of Notched Carbon Fibre-Epoxy Panels Soutis, C.
  7. Aribus Industrie Test Method AITM-1008 no.Issue 2
  8. PhD thesis, University of London Strength and Failure Mechanics of Unidirectional Carbon Fibre-Reinforced Plastics under Axial Compression Haberle.J.G.
  9. Plastics. Rubber and Composites v.3 no.8 Size Effect on Compressive Strength of T300/924C Carbon Fibre-Epoxy Laminates Soutis, C.;Lee, J.;Kong, C.
  10. Journal of Composite Materials v.16 no.March Experimental Determination of the In Situ Transverse Lamina Strength in Graphite/Epoxy Laminates Flaggs, L. D.;Kural, H. M. https://doi.org/10.1177/002199838201600203
  11. Composite Science and Technology v.30 no.4 Measurement of Small Angle Fibre Misalignments in Continuous Fibre Composites Yugartis, S. W. https://doi.org/10.1016/0266-3538(87)90016-9
  12. FE77 User' Manual Hitchings,D.
  13. Journal of Composite Materials v.30 no.5 The Continuous Curing Process for Thermoset Polymer Part 2: Experimental Results for a Graphite/Epoxy Laminate Kim, C.;White, S. R. https://doi.org/10.1177/002199839603000505
  14. Journal of Reinforced Plastics and Composites v.11 Compressive Strength of Unidirectional Composites Chim, E. S.;Lo, K. H. https://doi.org/10.1177/073168449201100801
  15. BAER 3014 no.ISSUE 3 Test Methods for the Fibre And void Content of Cured And Glass Fibre Composites British Aerospace Test Methods
  16. Polymer-Plastics Tech. Engin. v.5 no.1 Interlaminar Effects in Fibre-Reinforced Plastics? A Review McKenna, G. B. https://doi.org/10.1080/03602557508063092
  17. Composite Science and Technology v.45 no.3 Compression Failure of Unidirectional Glass-Fibre-Reinforced Plastics Bazhenov, S. L.;Kuperman, A. M.;Zelenskii, E. S.;Berlin, A. A. https://doi.org/10.1016/0266-3538(92)90080-M
  18. Computers and Structures v.16 no.1-4 Micromechanics Budiansky, B. https://doi.org/10.1016/0045-7949(83)90141-4
  19. Rapra Review Reports, Report 94 v.8 no.10 Compressive Behaviour of Composites Soutis, C.
  20. Composite Science and Technology v.59 no.13 Size Effects in The Testing of Fibre-Composite Materials Wisnom, M. R. https://doi.org/10.1016/S0266-3538(99)00053-6
  21. Journal of Composites Technology & Research v.9 no.3 The Effect of Thickness of Interlaminar Stresses and Delamination in Straight-Edged Laminates Lagace, P.;Brewer, J.;Kassapoglou, C. https://doi.org/10.1520/CTR10246J
  22. AIAA Journal v.30 no.4 Strength Scaling in Fibre Composites Kellas, S.;Morton, J. https://doi.org/10.2514/3.11029
  23. Computers & Structures v.40 no.6 Three-Dimensional Finite Element Analysis of Interlaminar Stresses in Thick Composite Laminates Kim. J. K.;Hong, C. S. https://doi.org/10.1016/0045-7949(91)90410-N
  24. Composite Structures v.45 no.1 Fracture Mechanics Using a 3D Composite Element Falzon, B. G.;Hitchings, D.;Besant, T. https://doi.org/10.1016/S0263-8223(99)00011-2
  25. Mechanics of composite Materials (2nd edition) Robert, M. J.
  26. PhD thesis, Imperial College London Compressive Behaviour of Composite Laminates Before and After Low Velocity Impact Lee, J.