DOI QR코드

DOI QR Code

Similarity Search Algorithm Based on Hyper-Rectangular Representation of Video Data Sets

비디오 데이터 세트의 하이퍼 사각형 표현에 기초한 비디오 유사성 검색 알고리즘

  • 이석룡 (한국외국어대학교 산업정보시스템공학부)
  • Published : 2004.08.01

Abstract

In this research, the similarity search algorithms are provided for large video data streams. A video stream that consists of a number of frames can be expressed by a sequence in the multidimensional data space, by representing each frame with a multidimensional vector By analyzing various characteristics of the sequence, it is partitioned into multiple video segments and clusters which are represented by hyper-rectangles. Using the hyper-rectangles of video segments and clusters, similarity functions between two video streams are defined, and two similarity search algorithms are proposed based on the similarity functions algorithms by hyper-rectangles and by representative frames. The former is an algorithm that guarantees the correctness while the latter focuses on the efficiency with a slight sacrifice of the correctness Experiments on different types of video streams and synthetically generated stream data show the strength of our proposed algorithms.

이 연구에서는 대용량 비디오 데이터 스트림에 대한 유사성 검색 알고리즘을 제시한다. 수많은 프레임으로 이루어진 비디오 스트림은 각 프레임을 다차원 벡터(multidimensional vector)로 나타냄으로써 다차원 데이터 공간 상에서 시퀸스로 나타낼 수 있다. 이 시퀸스의 특성을 분석 함으로써 각 시퀸스를 비디오 세그먼트(video segment)와 이 세그먼트의 집합인 비디오 클러스터(video cluster)로 표현한다. 본 연구에서는 이러한 비디오 세그먼트와 클러스터를 사용하여 두 비디오 스트림 사이의 유사성 함수(similarity function)를 제시하고, 이 함수에 근거하여 비디오 세그먼트의 하이퍼 사각형과 대표 프레임에 기초한 두 가지의 유사성 검색 알고리즘을 제안한다. 전자는 정해성(correctness)을 보장하는 알고리즘이며, 후자는 정해성을 약간 희생하는 대신 상당한 효율성을 얻을 수 있는 알고리즘이다. 다양한 유형의 비디오 스트림 및 가상으로 생성된 스트림 데이터에 대한 실험을 통하여 제시한 알고리즘의 성능을 분석한다.

Keywords

References

  1. R. Agrawal, C. Faloutsos, A. Swami, 'Efficient Similarity Search in Sequence Databases,' Proc. of Foundations of Data Organizations and Algorithms, Illinois, pp.69-84, 1993
  2. N. Beckmann, H. Kriegel, R. Schneider, B. Seeger, 'The $R^*$-tree : an efficient and robust access method for points and rectangles,' Proc. of ACM SIGMOD, New Jersey, pp.322-331, 1991
  3. S. Berchtold, D. Keim, H. Kriegel, 'The X-tree : an index structure for high-dimensional data,' Proc. of Int'l Conference on VLDB, India, pp.28-39, 1996
  4. C. Faloutsos, M. Ranganathan, Y. Manolopoulos, 'Fast Subsequence Matching in Time-Series Databases,' Proc. of ACM SIGMOD, Minnesota, pp.419-429, 1994 https://doi.org/10.1145/191843.191925
  5. M. Fickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, 'Query by Image and Video Content : The QBIC System,' IEEE Computer, Vol.28, No.9, pp.23-32, 1995 https://doi.org/10.1109/2.410146
  6. A. Guttman, 'R-trees : a dynamic index structure for spatial searching,' Proc. of ACM SIGMOD, Massachusetts, pp.47-57, 1984
  7. A. Hampapur, A. Gupta, B. Horowitz, C. F. Shu, C. Fuller, J. Bach, M. Gorkani, R. Jain, 'Virage Video Engine,' Proc. of SPIE : Storage and Retrieval for Image and Video Databases V, San Jose, pp.188-197, 1997 https://doi.org/10.1117/12.263407
  8. A. K. Jain, A. Vailaya, X. Wei, 'Query by Video Clip,' Multimedia Systems, Vol.7, pp.369-384, 1999 https://doi.org/10.1007/s005300050139
  9. N. Katayama, S. Satoh, 'The SR-tree : an index structure for high-dimensional nearest neighbour queries,' Proc. of ACM SIGMOD, Arizona, pp.369-380, 1997
  10. E. J. Keogh, K. Chakrabarti, S. Mehrotra, M. J. Pazzani, 'Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases,' Proc. of ACM SIGMOD, California, pp.151-162, 2001
  11. S. W. Kim, S. H. Park, W. W. Chu, 'An Index-Based Approach for Similarity Search Supporting Time Warping in Large Sequence Databses,' Proc. of IEEE Int'l Conference on Data Engineering, 2001, pp.607-614 https://doi.org/10.1109/ICDE.2001.914875
  12. S. L. Lee, S. J. Chun, D. H. Kim, J. H. Lee, C. W. Chung, 'Similarity Search for Multidimensional Data Sequences,' Proc. of IEEE Int'l Conference on Data Engineering, California, pp.599-608, 2000 https://doi.org/10.1109/ICDE.2000.839473
  13. S. L. Lee, C. W. Chung, 'Hyper-Rectangle Based Segmentation and Clustering of Large Video Data Sets,' Information Sciences, Vol.141, No.1-2, pp.139-168, 2002 https://doi.org/10.1016/S0020-0255(01)00195-5
  14. John Chung-Mong Lee, Qing Li, and Wei Xiong, 'VIMS : A Video Information Management System,' Multimedia Tools and Applications, Vol.4, No.1, pp.7-28, 1997 https://doi.org/10.1023/A:1009655814781
  15. Virginia E. Ogle and Michael Stonebraker, 'Chabot : Retrieval from a Relational Database of images,' IEEE Computer, Vol.28, No.9, pp.40-48, 1995 https://doi.org/10.1109/2.410150
  16. J. H. Oh, K. A. Hua, 'Efficient and Cost-effective Techniques for Browsing and Indexing Large Video Databases,' Proc. of ACM SIGMOD, pp.415-426, Dallas, 2000 https://doi.org/10.1145/342009.335436
  17. D. Rafiei, A. Mendelzon, 'Similarity-Based Queries for Time Series Data,' Proc. of ACM SIGMOD, Arizona, pp.13-25, 1997 https://doi.org/10.1145/253262.253264
  18. J. R. Smith, S. F. Chang, 'VisualSEEk : A Fully Automated Content-based Image Query System,' Columbia University, URL : http://www.ctr.columbia/VisualSEEk
  19. Y. Taniguchi, A. Akutsu, Y. Tonomura, 'PanoramaExcerpts : Extracting and Packing Panoramas for Video Browsing,' Proc. of ACM Multimedia, Washington, pp.427-436, 1997 https://doi.org/10.1145/266180.266396
  20. B. K. Yi, C. Faloutsos, 'Fast Time Sequence Indexing for Arbitary Lp Norms,' Proc. of Int'l Conference on VLDB, Cairo, pp.385-394, 2000
  21. H. J. Zhang, J. Wu, D. Zhong, S. W. Smoliar, 'An Integrated System for Content-Based Video Retrieval and Browsing,' Pattern Recognition, Vol.30, pp.643-653, 1997 https://doi.org/10.1016/S0031-3203(96)00109-4