DOI QR코드

DOI QR Code

XCRAB :내용 및 주석 기반의 멀티미디어 인덱싱과 검색 시스템

XCRAB : A Content and Annotation-based Multimedia Indexing and Retrieval System

  • 이수철 (아주대학교 정보통신 전문대학원) ;
  • 노승민 (아주대학교 정보통신 전문대학) ;
  • 황인준 (아주대학교 정보통신 전문대학원)
  • 발행 : 2004.08.01

초록

최근들어 오디오, 비디오와 이미지 같은 다양한 디지털 멀티미디어 데이터의 인덱싱, 브라우징과 질의를 위한 새로운 형태의 시스템이 개발되었다. 이러한 시스템은 각 미디어 스트림을 실제 물리적 이벤트에 따라서 작은 유닛단위로 나누고, 물리적 이벤트들을 검색을 위해서 효율적으로 인덱스화 시킨다. 본 논문에서는 오디오-비주얼 데이터의 분석과 세그멘테이션을 위해서 각 데이터가 가지고 있는 오디오, 이미지, 비디오 특징을 이용하는 새로운 방법을 사용한다. 이것은 이미지나 비디오만을 분석했던 이전의 방법들을 문제점을 해결 할 수 있다. 본 논문에서는 이와 같은 방법을 이용하여 XCRAB이라고 불리는 웹 기반 멀티미디어 검색 시스템을 구현하였고, 성능평가를 위해서 여러가지 질의의 조합을 이용하여 실험을 하였다.

During recent years, a new framework, which aims to bring a unified and global approach in indexing, browsing and querying various digital multimedia data such as audio, video and image has been developed. This new system partitions each media stream into smaller units based on actual physical events. These physical events within oath media stream can then be effectively indexed for retrieval. In this paper, we present a new approach that exploits audio, image and video features to segment and analyze the audio-visual data. Integration of audio and visual analysis can overcome the weakness of previous approach that was based on the image or video analysis only. We Implement a web-based multi media data retrieval system called XCRAB and report on its experiment result.

키워드

참고문헌

  1. Dongge Li, Ishwar K. Sethi, Nevenka Dimitrova, Thomas McGee, 'Classification of general audio data for content-based retrieval,'Pattern Recognition Letters, Vol.22, No.5, pp.533-544, 2001 https://doi.org/10.1016/S0167-8655(00)00119-7
  2. M. Flickner et al., 'Query by Image and Video Content : The QBIC System,' Computer, Vol.28, No.9, pp.23-32, 1995 https://doi.org/10.1109/2.410146
  3. B. Y. Ricardo and R. N. Berthier, Modern Information Retrieval, ACM press, 1999
  4. W. Niblack, et al., 'The QBIC project : Query images by content using color, texture and shape,' SPIE V 1908, 1993 https://doi.org/10.1117/12.143648
  5. J. R. Smith and S.-F. Chang, 'VisualSEEk : a fully automated content-based image query system,' ACM Multimedia, Boston, May, 1996 https://doi.org/10.1145/244130.244151
  6. N. Kosugi, Y. Nishihara and T. Sakata, 'A Practical Query-By-Humming System for a Large Music Database,' Proc. of ACM Multimedia 2000 Conference, November, 2000 https://doi.org/10.1145/354384.354520
  7. V. E. Ogle and M. Stonebraker, 'Chabot : Retrieval from a Relational Database of Images,' IEEE Computer, Vol.28, No.9, September, 1995 https://doi.org/10.1109/2.410146
  8. Lee, S. Y. and F. J. Hsu, 'Spatial reasoning and similarity retrieval of images using 2-D-C String knowledge representation,' Pattern Recognition, Vol.25-3, pp.305-318, 1992 https://doi.org/10.1016/0031-3203(92)90112-V
  9. M. Nabil, A. H. H. Ngu and J. Shepherd, 'Picture Similairty Retrieval Using the 2D Projection Interval Representation,' IEEE Trans. Knowledge and Data Eng., Vol.8, No.4, pp.533-539, Aug., 1996 https://doi.org/10.1109/69.536246
  10. A. Ghias, J. Logan, D. Chamberlin and B. Smith, 'Query by humming-musical information retrieval in an audio database,' Proc. of ACM Multimedia Conference, San Francisco, 1995 https://doi.org/10.1145/217279.215273
  11. S. Rho and E. Hwang, 'FMF(Fast Melody Finder) : A Web-based Music Retrieval System,' Lecture Notes in Computer Science, Springer-Verlag, Vol.2771, pp.179-192, 2003
  12. R. J. McNab, L. A. Smith, D. Bainbridge and I. H. Witten, 'The New Zealand digital library MELody inDEX,' D-Lib Magazine, May, 1997
  13. Huron, D., C. S. Sapp and B. Aarden, Themefinder, 2000. http://www.themefinder.org
  14. W. E. Mackay, G. Davenport, 'Virtual video editing in interactive multimedia applications,' Communications on ACM. 32, pp.802-810, 1989 https://doi.org/10.1145/65445.65447
  15. K. Hirata and T. Kato, 'Query by visual example-content based image retrieval,' Advances in Database Technology(EDBT '92), pp.56-71, 1992 https://doi.org/10.1007/BFb0032423
  16. S. Adali., et al., 'The Advanced Video Information System : data structures and query processing,' ACM Multimedia Systems, Vol.4, No.4, pp.172-186, 1996 https://doi.org/10.1007/s005300050021
  17. H. Kosch, R. Tusch, et al., 'The SMOOTH Video DB-Demonstration of an integrated generic indexing approach,' ACM Multimedia Conference, Los Angeles, USA, pp.495-496, October-November, 2000 https://doi.org/10.1145/354384.376413
  18. M. Carrer, L. Ligresti and T. D. C. Little, 'A Tcl/Tk-Based Video Annotation Engine,' Proc. USENIX, Fifth Annual Tcl/Tk Workshop, Summer, 1997
  19. S. Lee and E. Hwang, 'Spatial Similarity and Annotation-Based Image Retrieval System,' IEEE Fourth International Symposium on Multimedia Software Engineering, Newport Beach, CA, December, 2002 https://doi.org/10.1109/MMSE.2002.1181593
  20. S. Rho and E. Hwang, 'Video Scene Determination using Audiovisual Data Analysis,' Proc. of the 24th International Conference on Distributed Computing Systems (ICDCS '04) Workshops-Multimedia Network Systems and Applications (MNSA '04), Tokyo. Japan, pp.124-129, March, 2004 https://doi.org/10.1109/ICDCSW.2004.1284019