DOI QR코드

DOI QR Code

Autonomous Bipedal Locomotion with Evolutionary Algorithm

진화적 알고리즘을 이용한 자율적 2족 보행생성

  • 옥수열 (동명정보대학교 게임공학과)
  • Published : 2004.08.01

Abstract

In the research of biomechanical engineering, robotics and neurophysiology, to clarify the mechanism of human bipedal walking is of major interest. It serves as a basis of developing several applications such as rehabilitation tools and humanoid robots. Nevertheless, because of complexity of the neuronal system that interacts with the body dynamics system to make walking movements, much is left unknown about the details of locomotion mechanism. Researchers were looking for the optimal model of the neuronal system by trials and errors. In this paper, we applied Genetic Programming to induce the model of the nervous system automatically and showed its effectiveness by simulating a human bipedal walking with the obtained model.

생체 공학이나 신경생리학, 로봇공학에서는 인간의 2족 보행 메커니즘을 알아내는 것이 중요한 연구과제이며 그에 대한 연구 성과는 재활도구나 컴퓨터 애니메이션 및 인간형 로봇과 같은 다양한 응용분야에 있어서의 기초 기술로서 제공되어질 것을 기대하고 있다. 반면에 인간의 2보행 운동은 신경계와 역학계에 의한 복잡한 상호작용으로, 그 실현 메커니즘에 있어 신경계의 구체적인 제어방법에 관해서는 그 복잡성 때문에 아직 많은 부분이 불명확하게 남겨져 있다. 따라서 전문가에 의한, 매번 시행착오를 통해 신경계의 상세한 설계를 할 필요가 있다. 이 논문은 유전자 프로그래밍을 이용하여 신경계의 구조와 Parameter를 자동적으로 최적화하는 모델을 제안하고 시뮬레이션을 통해 타당성을 확인하였다.

Keywords

References

  1. E. Marder, N. Kopell and K. Sigvardt, How computation aids in understanding biological networks. In: Neurons, Networks and Motor Behavior, Eds. P.S.G. Stein, S. Grillner, D.G. Stuart and A.I. Selverston. MIT Press: Cambridge. pp. 139-150, 1997.
  2. A. I. Selverston, "Are central pattern generators understandable?", Behavioral and Brain Sciences, vol. 3, pp. 535-571, 1980. https://doi.org/10.1017/S0140525X00006580
  3. MR. Dimitrijevic, Y. Gerasimenko, and MM. Pinter, "Evidence for a spinal central pattern generator in humans", Annals of the New York Academy of Sciences Vol. 860 360-376, 1998. https://doi.org/10.1111/j.1749-6632.1998.tb09062.x
  4. J. Duysens, and , H.W.A.A. Van de Crommert, "Neural control of locomotion; part I. The central pattern generator from cats to humans" Gait and Posture Vol 7(2), 131-141, 1998. https://doi.org/10.1016/S0966-6362(97)00042-8
  5. S. Grillner, "Locomotion in vertebrates: central mechanisms and reflex interaction", Physiological Reviews, vol. 55, pp 247-304, 1975. https://doi.org/10.1104/pp.55.2.247
  6. S. Grillner, "Neurobiological bases of rhythmic motor acts in vertebrates", Science, vol. 228, pp. 143-149, 1985. https://doi.org/10.1126/science.3975635
  7. K.G. Pearson, "Common principles of motor control in vertebrates and invertebrates", Annual Review of Neuroscience, vol. 16, pp. 265-297, 1993. https://doi.org/10.1146/annurev.ne.16.030193.001405
  8. E. Marder and R. L. Calabrese, "Principles of rhythmic motor pattern generation", Physiological Reviews, vol. 76, pp. 687-717, 1996. https://doi.org/10.1152/physrev.1996.76.3.687
  9. R.J. Full and D.E. Koditschek, "Templates and Anchors: Neuromechanical Hypothesis of Legged Locomotion", Journal of Experimental Biology, vol. 202(23), pp. 3325-3332, 1999.
  10. J.J. Collins and I.N. Stewart, "Coupled Nonlinear Oscillators and The Symmetries Of Animal Gaits", Journal of Nonlinear Science, vol. 3, pp. 349-392, 1993. https://doi.org/10.1007/BF02429870
  11. W.O. Friesen, "Reciprocal inhibition: A mechanism underlying oscillatory animal movements" Neuroscience and Biobehavioral Reviews, vol 18(4), pp. 547-553, 1994. https://doi.org/10.1016/0149-7634(94)90010-8
  12. FK. Skinner, N. Kopell, E. Marder, "Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks", Journal of Computational Neuroscience vol 1, pp. 69-87, 1994. https://doi.org/10.1007/BF00962719
  13. J.J. Collins and S.A. Richmond, "Hard-Wired Central Pattern Generators For Quadrupedal Locomotion", Biological Cybernetics, vol. 71, pp. 375-385, 1994. https://doi.org/10.1007/BF00198915
  14. H. Yuasa and M. Ito, "A Theory on Structures of Decentralized Autonomous Systems(in Japanese)", Transactions of the Society of Instrument and Control Engineering, vol. 25(2), pp 180-187, 1991.
  15. Y. Ito and H. Yuasa, "Autonomous Distributed Systems which Generate Various Patterns Using Bifurcations(in Japanese)", Transactions of the Society of Instrument and Control Engineering, vol. 27(11), pp 1307-1314, 1991. https://doi.org/10.9746/sicetr1965.27.1307
  16. G. Taga, "A Model of the Neuro-Musculo-Skeletal System for Human Locomotion I: Emergence of Basic Gait". Biological Cybernetics, vol. 73(2), pp. 97-111, 1995. https://doi.org/10.1007/BF00204048
  17. G. Taga, "A Model of the Neuro-Musculo-Skeletal System for Human Locomotion II: Real-Time Adaptability Under Various Constraints", Biological Cybernetics, vol. 73(2): pp. 97-111, 1995. https://doi.org/10.1007/BF00204048
  18. G. Taga, "A Model of the Neuro-Musculo-Skeletal System for Anticipatory Adjustment of Human Locomotion During Obstacle Avoidance", Biological Cybernetics, vol. 78(1), pp. 9-17, 1998. https://doi.org/10.1007/s004220050408
  19. J.S. Bay, H. Hemani, "Modeling of Neural Pattern Generator with Coupled Nonlinear Oscillators", IEEE Trans. on Biomedical Engineering, BME-34-4, pp 297-306, 1987 https://doi.org/10.1109/TBME.1987.326091
  20. K. Matsuoka, "Mechanisms of Frequency and Pattern Control in the Neural Rhythm Generators", Biol., Cybern., vol. 56, pp. 345-353, 1987. https://doi.org/10.1007/BF00319514
  21. K. Akazawa, J. Aldridge, J. D. Steeves, and R.B. Stein, “Modulation of stretch reflexes during locomotion in the mesencephalic cat”, Journal of Physiology vol. 329, pp. 553-567. 1982. https://doi.org/10.1113/jphysiol.1982.sp014319
  22. A. H. Cohen, and D. L. Boothe, "Sensorimotor interactions during locomotion: principles derived from biological systems" Autonomous Robots vol. 7(3), pp. 239-245, 1999. https://doi.org/10.1023/A:1008920420634
  23. H. Garis, "Genetic Programming: building artificial nervous systems using genetically programmed neural networks modules", In Proc of the 7th International Conference on Machine Learning, pp. 132-139, 1990.
  24. J.R. Koza and J.P. Rice, "Genetic Generation of Both the Weights and Architecture for a Neural Network", In Proc. of the IEEE International Joint Conference on Neural Networks, vol. 2 pp. 397-404, 1991.
  25. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, Massachusetts, 1992.
  26. K. Hase, N. Yamazaki, "Computational evolution of human bipedal walking by a neuro-musculo-skeletal model", Artificial Life and Robotics vol. 3, pp. 133-138, 1999. https://doi.org/10.1007/BF02481128