DOI QR코드

DOI QR Code

SOX 유전자의 다양성

Multiple Facets of Sox Gene

  • 발행 : 2004.08.01

초록

Sox 패밀리는 동물계 전체에서 찾아지는 전사인자이고, HMG라는 특이적인 DNA결합 도메인을 가진다. 이 Sox 패밀리는 HMG 도메인의 아미노산 서열을 바탕으로 현재 10개의 그룹으로 분류된다. 각 그룹의 오소로그한 Sox 단백질들은 선충에서 인간까지 상당한 보존성을 보인다. HMG 도메인은 전사 촉진 좌위에 결합하고 다른 전사인자들의 결합을 조절함으로써 동물 발생과정의 다양한 세포에서 발현되어 그들의 분화에 결정적인 영향을 미친다. 최근 많은 분자 생물학자들이 Sox 유전자와 관련된 질병, 진화, 그리고 계통 분류 등에 많은 관심을 보이고 있다. 특히, 줄기세포에서 Sox 유전자의 연구는 그들의 생물학적인 기능을 이해하기 위해 꼭 필요한 분야이다. 아마도 이 Sox 유전자들을 이해함으로써, 인간의 유전적 질병과 인간을 포함한 전체 동물계의 진화를 이해할 수 있는 열쇠가 될 것이라 생각한다.

Sox protein family, a transcription factor, has been found in whole animal kingdom, and contains a sequence-specific DNA binding domain called high mobility group domain (HMG). The Sox protein family based on the amino acid sequence of HMG domain was classified into 10 groups. Each group of Sox family shows significant conservation from nematode to human. The HMG domain affect to various developmental cell differentiation through binding to enhancer and regulating other transcription factors. Recently, many molecular biologists focus their research on the illustration of Sox-related disease, evolution and phylogeny. Especially, stem cell research with Sox gene family is indispensable field for understanding of their biological functions. The understanding of Sox genes may contribute to understand their role in human genetic disease and whole animal evolution.

키워드

참고문헌

  1. Bienz, M. 1998. TCF: transcriptional activator or repressor? Curr. Opin. Cell Biol. 10, 366-372 https://doi.org/10.1016/S0955-0674(98)80013-6
  2. Boras, K., and P. A. Hamel. 2002. Alx4 Binding to LEF-1 regulates N-CAM promoter activity. J. Biol. Chem. 277, 1120-1127 https://doi.org/10.1074/jbc.M109912200
  3. Bowles, J., L. Cooper, J. Berkman and P. Koopman. 1999. Sry requires a CAG repeat domain for male sex determination in Mus musculus. Nat. Genet. 22, 405-408 https://doi.org/10.1038/11981
  4. Bowlws, J., G. Schepers and P. Koopman. 2000. Phylogeny of the Sox family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 227, 239-255 https://doi.org/10.1006/dbio.2000.9883
  5. Collignon, J., S. Sockanathan, A. Hacker, M. Cohentannoudji, D. Norris, S. Rastan, M. Stevanovic, P. N. Goodfellow and R. Lovell-Badge. 1996. A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509-520
  6. Di Rocco, G., A. Gavalas, H. Popperl, R. Krumlauf, F. Mavilio and V. Zappavigna. 2001. The recruitment of SOX/OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto-regulatory enhancer fuction. J. Biol. Chem. 276, 20506-20515 https://doi.org/10.1074/jbc.M011175200
  7. Forwood, J., V. Harley and D. Jans. 2001. The C-terminal nuclear localization signal of the sex determining region Y (SRY) high mobility group domains mediates nuclear import through importin beta 1. J. Biol. Chem. 276, 46574- 46582 https://doi.org/10.1074/jbc.M101668200
  8. Foster, J. W., M. A. Dominguez-Steglich, S. Guioli, C. Kwok, P. A. Weller, M. Stevanovic, J. Weissenbach, S. Mansour, I. D. Young, P. N. Goodfellow, J. D. Brook and A. J. Schafer. 1994. Campomelic dysplasia and autosomal sex reversal caused by mutation in an SRY-related gene. Nature 372, 525-530 https://doi.org/10.1038/372525a0
  9. Harley, V. R., R. Lovell-Badge and P. N. Goodfellow. 1994. Definition of a consensus DNA binding site for SRY. Nucleic Acids Res. 22, 1500-1501 https://doi.org/10.1093/nar/22.8.1500
  10. Hosking, B. M., S. C. M. Wang, S. L. Chen, S. Penning, P. Koopman and G. E. O. Muscat. 2001. Sox 18 directly interacts with MEF2C in endothelial cells. Biochem. Biophy. Res. Commun. 287, 493-500 https://doi.org/10.1006/bbrc.2001.5589
  11. Kamachi, Y., M. Uchikawa, J. Collignon, R. Lovell-Badge and H. Kondoh. 1998. Involvement of Sox 1, 2, and 3 in the early and subsequent molecular events of lens induction. Development 125, 2521-2532
  12. Kamachi, Y., M. Uchikawa, A. Tanouchi, R. Sekido, and H. Kondoh. 2001. Pax6 and Sox2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes. Dev. 15, 1272-1282 https://doi.org/10.1101/gad.887101
  13. Katoh, K. and T. Miyata. 1999. A heuristic approach of maximum likelihood method for inferring phylogenetic tree and an application to the mammalian Sox-3 origin of the testis-determining gene SRY. FEBS Lett. 464, 129-132 https://doi.org/10.1016/S0014-5793(99)01621-X
  14. Kent, J., S. C. Wheatley, J. E. Andrews, A. H. Sinclair and P. Koopman. 1996. A male-specific role for SOX9 in vertebrate sex determination. Development 122, 2813-2822
  15. Kuhlbrodt, K., B. Herbarth, E. Sock, I. Hermans-Borgmeyer and M, Wegner. 1998. Sox10, a novel transcriptional modulator in glial cells. J. Neurosci. 18, 237-250
  16. Lefebvre, V., P. Li and B. de Crombrugghe. 1998. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 17, 5718-5733 https://doi.org/10.1093/emboj/17.19.5718
  17. Melnikova, I., H. Lin, A. Blanchette and P. Gardner. 2000. Synergistic transcriptional activation by Sox 10 and Sp1 family members. Neuropharmacology 39, 2615-2623 https://doi.org/10.1016/S0028-3908(00)00125-8
  18. Poulat, F., F. Girard, M-. P. Chevron, C. Goze, X. Rebillard, B. Calas, N. Lamb, and P. Berta. 1995. Nuclear localization of the testis determining gene product SRY. J. Cell Biol. 272, 27848-27852
  19. Schepers, G. E., R. D. Teasdale and P. Koopman. 2002. Twenty pairs of Sox: Extent, Homology, and Nomenclature of the mouse and human Sox transcription factor gene families. Dev. Cell 3, 167-170 https://doi.org/10.1016/S1534-5807(02)00223-X
  20. Schepers, G., M. Bullejos, B. Hoskings and P. Koopman. 2000. Cloning and characterization of the Sryrelated transcription factor gene, Sox8. Nucleic Acid Res. 28, 1473-1480 https://doi.org/10.1093/nar/28.6.1473
  21. Sinclair, A. H., P. Berta, M. S. Palmer, J. R. Hawkins, B. L. Griffiths, M. J. Smith, J. W. Foster, A. M. Frischauf, R. Lovell-Badge and P. N. Goodfellow. 1990. A gene from human sex determining region encode a protein with homology to a conserved DNA-binding motif. Nature 346, 240-244 https://doi.org/10.1038/346240a0
  22. Smith, J. M. and P. A. Koopman. 2004. The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease. TRENDS genet. 20, 4-8 https://doi.org/10.1016/j.tig.2003.11.007
  23. Soullier, S., P. Jay, F. Poulat, J.-M. Vanacker, P. Berta, and V. Laudet. 1999. Diversification pattern of the HMG and Sox family members during evolution. J. Mol. Evol. 48, 517-52 https://doi.org/10.1007/PL00006495
  24. Swain, A., V. Narvaez, P. Burgoyne, G. Camerino and R. Lovell-Badge. 1998. Dax1 antagonizes Sry action in mammalian sex determination. Nature 391, 761-767 https://doi.org/10.1038/35799
  25. Uwanogho, D., M. Rex, E. J. Cartwright, G. Pearl, C. Healy, P. J. Scotting, and P. T. Sharpe. 1995. Embryonic expression of the chicken Sox2, Sox3 and Sox11 gene suggests an inactivative role in neuronal development. Mech. Dev. 49, 23-36 https://doi.org/10.1016/0925-4773(94)00299-3
  26. Werner, M. H. and S. K. Burley. 1997. architectural transcription factors: proteins that remodel DNA. Cell 88, 733-736 https://doi.org/10.1016/S0092-8674(00)81917-0
  27. Wegner, M. H. 1999. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 1409-1420 https://doi.org/10.1093/nar/27.6.1409
  28. Werner, M. H., J. R. Huth, A. M. Gronenborn and G. M. Clore. 1995. Molecular basis of human 46X, Y sex reversal revealed from the three-dimentional solution structure of the human SRY-DNA complex. Cell 81, 705-714 https://doi.org/10.1016/0092-8674(95)90532-4
  29. Wilson, M., and P. Koopman. 2002. Matching Sox: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr. Opin. Genet. Dev. 12, 441-446 https://doi.org/10.1016/S0959-437X(02)00323-4
  30. Wright, E. M., B. Snopek, and P. Koopman. 1993. Seven new members of the Sox gene family expressed during mouse development. Nucleic Acid Res. 21, 744 https://doi.org/10.1093/nar/21.3.744
  31. Wright, E., M. R. Hargrave, J. Christiansen, L. Cooper, J. Kun, T. Evans, U. Gangadharan, A. Greenfield and P. Koopman. 1995. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nature Genet. 9, 15-20 https://doi.org/10.1038/ng0195-15
  32. Yuan, H., N. Corbi, C. Basilico and L. Dailey. 1995. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Gene Dev. 9, 2635-2645 https://doi.org/10.1101/gad.9.21.2635
  33. Yuan, X., M. Lu, T. Li, and S. Balk. 2001. SRY interacts with and negatively regulates androgen receptor transcriptional activity. J. Biol. Chem. 276, 46647-46654 https://doi.org/10.1074/jbc.M108404200
  34. Zwilling, S., H. Konig and T. Wirth. 1995. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J. 14, 1198-1208