DOI QR코드

DOI QR Code

파라치온 분해 세균 Pseudomonas rhodesiae H5의 특성

Characteristics of the Parathion Degrading Pseudomonas rhodesiae H5.

  • 윤남경 (한남대학교 이과대학 미생물학과) ;
  • 박경량 (한남대학교 이과대학 미생물학과)
  • 발행 : 2004.08.01

초록

대전 근교의 농약으로 오염된 토양으로부터 파라치온을 분해하는 81균주를 분리한 후, 분리균주들중 파라치온 이용능이 가장 우수한 한 균주를 최종선별하였다. 최종 선별된 균은 생리생화학적 조사와 16S rRNA 염기 서열분석 등을 통하여 Pseudomonas rhodesiae H5로 확인되었다. Pseudomonas rhodesiae H5는 다양한 당을 이용하였으나 sorbose는 이용하지 못하였다. 또 이 균주는 ampicillin, spectinomycin, mito-mycin C에는 일부 저항성을 가지나 kanamycin, chloram-phenicol에는 저항성을 나타내지 않았다. 그리고 $BaCl_2$, LiCl, $MnSO_4$등의 중금속에서는 mg/ml 단위까지 강한 내성을 나타냈다. Pseudomonas rhodesiae H5의 최적 생장 조건은 3$0^{\circ}C$, pH 7.0 이었고, 이 균주는 파라치온의 organophosphate bond를 가수분해하여 p-nitrophenol를 생성한 후 ortho-ring cleavage를 거쳐 중심대사에 연결되는 것으로 추정된다.

Eighty one bacterial strains of parathion degrading bacteria were isolated from soil samples that were contaminated with pesticide in Daejeon area. Among them, one bacterial strain was finally selected in media containing parathion as the sole source of carbon and energy, and this strain was identified as Pseudomonas rhodesiae H5 through physiological and biochemical tests, and analysis of its 16S rRNA sequence. Pseudomonas rhodesiae H5 was able to utilize various carbohydrates but did not utilize sorbose as sole carbon source. Pseudomonas rhodesiae H5 was resistance to ampicillin, spectinomycin, and mitomycin C but sensitive to kanamycin and chloramphenicol. And this strain showed high resistance up to several milligrams of heavy metals such as $BaCl_2$, LiCl, and $MnSO_4$. Optimal growth condition for temperature and pH of P. rhodesiae H5 was 3$0^{\circ}C$, and pH 7.0, respectively. It can be presumed that P. rhodesiae H5 hydrolyzed an organophosphate bond of parathion, forming p-nitrophenol, and then metabolized via ortho-ring cleavage mechanism.

키워드

참고문헌

  1. Bang, S. W. 1997. Molecular analysis of $\rho$-nitrophenol degradation by Pseudomonas sp. 159 pages. ENV2030. Ph.D. Thesis. Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey
  2. Bhushan B., A. Chauhan , S. K. Samanta and R. K. Jain 2000. Kinetics of biodegradation of $\rho$-nitrophenol by different bacteria. Biochem. Biophys. Res. Commun. 274, 626- 630 https://doi.org/10.1006/bbrc.2000.3193
  3. Borrell, N., S. G. Acinas, M. J. Figueras and A. Martinez- Murcia. 1997. Identification of Aeromonas clinical isolates by restriction fragment length polymorphism of PCR- amplified 16S rRNA genes. J. Clin. Microbiol. 35, 1671-1674
  4. Brown, K. A. 1980. Phosphotriesterases of Flavobacterium sp. Soil Biol. biochem. 12, 105-112 https://doi.org/10.1016/0038-0717(80)90044-9
  5. Chaudhry, G. R., A. N. Ali and W. B. Wheeler. 1988. Isolation of methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flabovacterium sp. Appl. Environ. Microbiol. 54, 288-293
  6. DeFrank, J. J. and T. C. Cheng. 1991. Purification and properties of an organophosphorus acid anhydrolase from a halophilic bacterial isolate. J. Bacteriol. 173, 1938-1943
  7. Hanne, L. F., L. L. Kirk, Appel, M, A. D. Narayan and K. K. Bains 1993. Degradation and induction specificity in Actinomycetes that degrade \rho-nitrophenol. Appl. Environ. Microbiol. 59, 3505-3508
  8. Jain R. K., J. H. Dreisba and J. C. Spain, 1994. Biodegradation of $\rho$-nitrophenol via 1,2,4-benzenetriol by and Arthrobacter sp. Appl. Environ. Microbiol. 60, 3030-3032.
  9. Jean F. and M. addin. 1980. Biochemical tests for identification of medical bacteria. Williams and WilKins, Baltmore, London
  10. Kadiyala V, B. F. Smets, K. Chandran and J. C. Spain 1998. High affinity $\rho$-nitrophenol oxidation by Bacillus sphaericus JS905. FEMS Microbiol Lett. 166, 115-120 https://doi.org/10.1111/j.1574-6968.1998.tb13191.x
  11. Kim, G. J., S. K. Koh and K. R. Park. 1994. Characterization of bacteria degrading 3-Chlorobenzoic acid. Kor. Jour. Microbiol. 32(5), 336-344
  12. Koelle. G. B. 1975. Anticholinesteraseagents. In 'The Pharmacological basic of Therapeutics'(L. S. Goodman and A. Gilman. end), 5th Ed, p. 445. Macmilan, New York
  13. Kolpin, D. W., J. E. Barbash and R. J. Gilliom. 1998. Occurrence of pesticides in shallow groundwater of the United States: Initial results from the National Water- Quality Assenssment Program. Environ. Sci. Technol. 32, 558-566 https://doi.org/10.1021/es970412g
  14. Krieg, H., N. Tone and K. Tonomura. 1984. Bergey`s manual of systematic bacteriology. Vol. I. Williams and Wilkins
  15. Laveglia, J. and P.A. Dahm. 1977. Degradation of organophosphorous and carbamate insecticides in the soil and by soil microorganism. Annu. Rev. Entomol. 22, 483-513 https://doi.org/10.1146/annurev.en.22.010177.002411
  16. Mulbry, W., J. S. Karns, P. C. Kearney, J. O. Nelson, C. S. McDaniel and J. R. Wild. 1986. Identification of a plasmid- borne parathion hydrolase gene from Flavobacterium sp. by Southern hybridization with opd from Pseudomonas diminuta. Appl. Environ. Microbiol. 51, 926-930
  17. Mulbry, W. and Karns, J. S. 1989. Parathion hydrolase specified by the Flavobacterium opd gene:relationship between the gene and protein. J. Bacteriol. 171, 6740-6746
  18. Munnecke, D. M., L. M. Johnson, H. W. Talbot and S. Barik. 1982. Microbial metabolism and enzymology of selected pesticides, p. 1-32. In A. M. Charkrabarty (de.), Biodegradation and detosification of environmental pollutants. CRC Press. BocaRaton, Fla
  19. Munnecke, D. M. and D. P. H. Hsieh. 1976. Pathways of microbial metabolism of parathion. Appl. Environ. Microbiol. 31, 63-69
  20. Munnecke, D. M. and D. P. H. Hsieh. 1974. Microbial decontamination of parathion and $\rho$-nitrophenol in aqueous media. Appl. Microbiol. 28, 212-217
  21. Nelson. L. M. 1982. Biologically induced hydrolysis of parathion in soil: isolation of hydrolyzing bacteria. Soil Biol. Biochem. 44, 219-222 https://doi.org/10.1016/0038-0717(82)90028-1
  22. Ou. L. T. and A. Sharma. 1989. Degradation of methyl parathion by a mixed bacterial culture and a Bacillus sp. isolated from different soils. J. Agric. Food Chem. 37, 1514- 1518 https://doi.org/10.1021/jf00090a014
  23. Prakash D, Chauhan A and Jain R. K. 1996. Plasmid- encoded degradation of $\rho$-nitrophenol by Pseudomonas cepacia. Biochem. Biophys. Res Commun. 224, 375-381 https://doi.org/10.1006/bbrc.1996.1036
  24. Serdar, C. M., D. T. Murdock and M. F. Rohde. 1989. Parathion hydrolase gene from Pseudomonas diminuta MG: subcloning, compete nucleotide sequence, and expression of the mature portion of the enzyme in Escherichia coli. Bio/Technology. 7, 1151-1155
  25. Sethunathan, N. and T. Yoshida. 1973. A Flavobacterium that degrades diazinon and parathion. Can. J. Microbiol. 19, 873-875 https://doi.org/10.1139/m73-138
  26. Siddaramappa, R., K. P. Rajaram and N. Sethunathan. 1973. Degradation of parathion hy bacteria siolated from flooded soil. Appl. Microbio. 26, 846-849
  27. Sneath, P. H. A., N. S. Mair, M. Sharpe and J. G. Holt. 1986. Bergey`s manual of Systematic bacteriology. Vol. Ⅱ. Williams and Wilkins
  28. Spain J. C., O. Wyss and D. T. Gibson 1979. Enzymatic oxidation of $\rho$-nitrophenol in a Moraxella species. Appl. Environ. Microbiol. 57, 812-819
  29. Spain, J. C. and D. T. Gibson. 1991. Pathway for biodeg- radation of $\rho$-nitrophenol in a Moraxella sp. Appl. Environ. Microbiol. 57, 812-819
  30. Wagner, S. M., B. P. Dancik, M. A. Saghai-Marrof, S. M. Williams, B. P. Dancik and R.W. Allard. 1987. Chloroplast DNA polymorphisms in lodgepole and jack pimes and their hybids. Proc. Natl. Acad. Sci. USA 84, 2097-2100 https://doi.org/10.1073/pnas.84.7.2097
  31. Walter W. Mulbry and Jeffrey S. Karns. 1989. Purification and chracterization of three parathion hydrolases from Gram-negative bacterial strains. Appl. Environ. Microbiol. 55, 289-293
  32. Zylstra G. J., S. W. Bang, L. M. Newman and L. L. Perry. 2000. Microbial degradation of mononitrophenils and mononitrobenzoates. p. 145-160. In: Spain JC, Hughes JB, Knackmuss JB, editors. Biodegaradation of nitroaromatic compounds and explosives. Boca Raton: Lewis Publishers