DOI QR코드

DOI QR Code

반응성 염료폐수 처리를 위한 Comamonas sp. AEBL-85 분리 및 회분식 탈색

Batch Decolorization of Reactive Dye Waste Water by a Newly Isolated Comamonas sp. AEBL-85.

  • 이은열 (경성대학교 공과대학 식품공학과)
  • 발행 : 2004.08.01

초록

Azo계 염색 폐수 처리에 활용되었던 활성 슬러지의 미생물 군집체로부터 diazo계 반응성 염료인 Reactive Black 5를 유일 탄소원으로 성장할 수 있는 Comamonas sp. AEBL-85를 분리ㆍ동정하고, Comamonas sp. AEBL-85를 이용한 Reactive Slacks에 대한 회분식 탈색 특성을 평가하였다. 염료탈색 반응 효율 향상을 위해 보조 탄소원 및 질소원 첨가하고, pH, 온도 등의 분해조건이 탈색율에 미치는 영향을 분석한 결과, 3% (w/v)의 포도당, 0.5% (w/v)의 yeast extract를 첨가한 MSM에서 pH 6.0, 온도 35$^{\circ}C$의 조건에서 탈색효율이 가장 높았다. 초기농도 50 mg/l의 Reactive Black 5에 대하여 40시간의 회분식 탈색반응을 통해 약 95% 이상의 탈색율을 얻을 수 있었다.

Comamonas sp. AEBL-85 was isolated from microbial granules in an activated sludge process of long-term operated for the treatment of reactive azo dye, and characterized its capability to decolorize Reactive Black 5. The effects of adding carbon source and nitrogen source on the extent of decol-orization were analyzed to develop an optimal medium. The optimum initial pH and temperature wire 6.0 and 35$^{\circ}C$, respectively. Reactive Black 5 of 50 mg/l was readily decolorized up to 95% within 40 hr by Comamonas sp. AEBL-85.

키워드

참고문헌

  1. Banat, I. M., P. Nigam, D. Singh and R. Marchant. 1996. Microbial decolorization of textile-dye-containing effluents: a review. Biores. Technol. 58, 217-227 https://doi.org/10.1016/S0960-8524(96)00113-7
  2. Chen, K. C., J. Y. Wu, D. J. Liou and S. C. J. Hwang. 2003. Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol. 101, 57-68 https://doi.org/10.1016/S0168-1656(02)00303-6
  3. Coughlin, M. F., B. K. Kinkle, A. Tepper and P. L. Bishop. 1997. Characterization of aerobic azo dye-degrading bacteria and their activity in biofilms. Water Sci. Tech. 36, 215-220 https://doi.org/10.1016/S0273-1223(97)00327-2
  4. Groff, K. A. and B. R. Kim. 1989. Textile Wastes. J. Wat. Poll. Control Fed. 61, 872-876
  5. Kirby, N., R. Marchant, and G. McMullan. 2000. Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol. Lett. 188, 93-96 https://doi.org/10.1111/j.1574-6968.2000.tb09174.x
  6. Meyer, U. 1981. Biodegradation of synthetic organic colorants, pp. 371-385, In Leisinger, T., A. M. Cook, R. Hutter and J. Nuesch (eds.), Microbial degradation of xenobiotic and recalcitrant compounds, FEMS Symposium 12, Academic Press Inc., London
  7. O'Neill C, F. R. Hawkes, D. L. Hawkes, N. D. Lourenco, H. M. Pinheiro and W. Delee. 1999. Colour in texile effluents - sources, measurement, discharge consents and simulation: a review. J. Chem. Technol. Biotechnol. 74, 1009- 1018 https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N
  8. Rafii, F., W. Flanklin and C. E. Cerninglia. 1990. Azoreductase Activity of anaerobic Bateria isolated from Human Intestinal Microflora. Appl. Environ. Microbiol. 56, 2146- 2151
  9. Reddy, C. A. 1995. The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol. 6, 320-328 https://doi.org/10.1016/0958-1669(95)80054-9
  10. Shelley, M. L., W. Randall and P. H. King. 1976. Enalation of Chemical Biological and Chemical-Physical Treatment for Texile Dyeing and finishing Waste. J. Wat. Poll. Control Fed. 48, 753-761
  11. Stolz, A. 2001. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56, 69-80 https://doi.org/10.1007/s002530100686
  12. Swamy, J. and J. A. Ramsay. 1999. The evaluation of white rot fungi in the decoloration of textile dyes. Enzyme Micribial Technol. 24, 130-137 https://doi.org/10.1016/S0141-0229(98)00105-7
  13. Yeh, R. Y. L. and A. Thomas. 1995. Color difference measurement and color removal from dye wastewaters using difference adsobents. J. Chem. Technol. Biotechnol. 63, 55-59 https://doi.org/10.1002/jctb.280630108
  14. Zollinger, H. 1987. Colour chemistry : synthesis, properties and applications of organic dyes and pigments. pp 92-100. VCH, New York