DOI QR코드

DOI QR Code

테인터수문이 설치된 월류형 여수로에서의 흐름에 대한 수치모의

A Numerical Simulations on the Flow over Ogee Spillway with Tainter Gate

  • 김대근 (대불대학교 토목환경공학과) ;
  • 박재현 (인제대학교 토목공학) ;
  • 이재형 (현대엔지니어링(주) 수자원부)
  • 발행 : 2004.08.01

초록

본 연구에서는 FLOW-3D를 이용하여, 테인터수문이 설치된 표준 월류형 여수로에서 수문을 부분 개방했을 경우에 대한 월류흐름 거동을 해석하였다. 모의결과, 유량계수는 약 0.685에서 0.723의 범위를 가지는 것으로 분석되었다. 수문을 완전 개방한 경우의 월류유량을 이용하여 수문을 부분 개방한 경우의 월류유량을 효과적으로 산정 할 수 있는 방법을 제시하였다. 수문의 개방고와 개방도에 따라 여수로면과 수문에 작용하는 압력분포의 특성을 분석하였다. 일정한 수문 개방고에 대해 수문의 개방도가 감소할수록 그리고 일정한 개방도에 대해 수문의 개방고가 높을수록, 여수로면에서 부압은 크게 발생하며 수문에 작용하는 무차원 최대압력은 증가하는 것으로 분석되었다.

In this study, overflow behaviors through a partially open tainter gate mounted on a standard ogee spillway were investigated by using the FLOW-3D. The results indicated that the discharge coefficient is in the range of 0.685 to 0.723. A relation of gate-controlled discharge to free discharge was proposed and a reasonable correlation between the free and controlled discharge was obtained. Pressures on the spillway crest and the gate were also investigated. As the gate opening rate decreases with a fixed gate opening height and the gate opening height increases at a fixed gate opening rate, negative pressures on the spillway crest and the dimensionless maximum pressures on the gate increase.

키워드

참고문헌

  1. 김남일 (2003). Investigation of scale effects of hydraulic model for dam spillway using 3-D CFD model. 박사학위논문, 서울대학교
  2. 김대근, 이재형, 서일원 (2004). '교각이 설치된 월류형 여수로에서의 흐름에 대한 수치모의.' 한국수자원학회논문집, 한국수자원학회, 제37권, 제5호, pp. 363-373 https://doi.org/10.3741/JKWRA.2004.37.5.363
  3. 김영한, 오정선, 서일원 (2003). '수치모형을 이용한 댐상류 및 여수로 수리현상 해석.' 한국수자원학회논문집, 한국수자원학회, 제36권, 제5호, pp. 761-776 https://doi.org/10.3741/JKWRA.2003.36.5.761
  4. 이정렬 (1994). '연직수문하의 경계층 흐름.' 한국수문학회지, 제 27권, 제3호, pp. 95-105
  5. 윤용남 (2002). 수리학 (기초와 응용). 청문각
  6. 한국수자원학회 (2003), 댐설계기준
  7. Chan, S.T.K., Larock, B.E., and Herrmann, L.R. (1973), 'Free surface ideal fluid flow.' Journal of Hydraulics Div., ASCE, Vol. 99, No. 6, pp. 959-974
  8. Chow, V.T. (1959). Open-Channel Hydraulics, McGraw-Hill Book Company
  9. Flow Science (2002). FLOW-3D (Theory Manual), Los Alamos, NM
  10. Ho, D.K.H., Boyes, K.M., and Donohoo, S.M. (2001). 'Investigation of spillway behavior under increased maximum flood by computational fluid dynamics technique.' 14th Australasian Fluid Mechanics Conference, Adelaide University, Adelaide, Australia
  11. Isaacs, L.T. and Allen, P.H. (1994). 'Contraction coefficients for radial sluice gates.' Proceedings 1994 International Conference on Hydraulics in Civil Engineering, National Conference Publish No.94/1, Institution of Engineers, Barton, ACT, Australia
  12. Masliyah, J.H., Nandakumar, K., Hemphill, F., and Fung, L. (1985). 'Body-fitted coordinates for flow under sluice gates.' Journal of Hydraulics Div. ASCE, Vol. 111, No. 6, pp. 922-933 https://doi.org/10.1061/(ASCE)0733-9429(1985)111:6(922)
  13. Montes, J.S. (1997). 'Irrotational flow and real fluid effects under planar sluice gates.' Journal of Hydraulics Engineering, ASCE, Vol. 123, No. 3, pp. 219-232 https://doi.org/10.1061/(ASCE)0733-9429(1997)123:3(219)
  14. Noutsopoulos, G.K. and Frnariotis, S. (1978). 'Discussion to free flow immediately below sluice gates.' Journal of Hydraulics Div., ASCE, Vol. 104, pp. 451-454
  15. Olsen, N.R. and Kjellesvig, H.M. (1998). 'Three-dimensional numerical flow modeling for estimation of spillway capacity.' Journal of Hydraulic Research, IAHR, Vol. 36, No. 5, pp. 775-784 https://doi.org/10.1080/00221689809498602
  16. Rajaratnam, N. (1977). 'Free flow immediately below sluice gates.' Journal of Hydraulics Div., ASCE, Vol. 103, pp. 345-351
  17. Rajaratnam, N. and Humphries, J.A. (1982). 'Free flow upstream of vertical sluice gates.' Journal of Hydraulic Research, IAHR, Vol. 20, pp. 427-436 https://doi.org/10.1080/00221688209499471
  18. Rajaratnam, N. and Subramanya, K. (1967). 'Free flow upstream of vertical sluice gates.' Journal of Irrigation Drainage Div., ASCE, Vol. 93, pp. 167-168
  19. Roth, A. and Hager, W.H. (1999). 'Underflow of standard sluice gate.' Experiments in Fluids, Vol. 27, pp. 339-350 https://doi.org/10.1007/s003480050358
  20. Savage, B.M. and Johnson, M.C. (2001). 'Flow over ogee spillway : Physical and numerical model case study.' Journal of Hydraulics Engineering, ASCE, Vol. 127, No. 8, pp. 640-649 https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640)
  21. Speerli, J. and Hager, W.H. (1999). 'Discussion to irrotational flow and real fluid effects under planar sluice gates.' Journal of Hydraulics Engineering, ASCE, Vol. 125, pp. 208-210 https://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(210)
  22. US Army Corps of Engineers (USACE) (1988). Hydraulic design criteria, Mississippi, USA
  23. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., and Speziale, C.G. (1992) Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids, Vol. 4, No. 7, pp. 1510-1520 https://doi.org/10.1063/1.858424
  24. Physics of Fluids v.4 no.7 Development of turbulence models for shear flows by a double expansion technique Yakhot,V.;Orszag,S.A.;Thangam,S.;Gatski,T.B.;Speziale,C.G. https://doi.org/10.1063/1.858424