Preparation and Characterization of Sulfonated Poly(phthalazinone ether sulfone ketone) (SPPESK)/Silica Hybrid Membranes for Direct Methanol Fuel Cell Applications

  • Kim, Dae-Sik (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Shin, Kwang-Ho (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Park, Ho-Bum (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Lee, Young-Moo (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University)
  • 발행 : 2004.08.01

초록

Sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) membranes and sol-gel derived SPPESK/silica hybrid membranes have been investigated as potential polymer electrolyte membranes for direct methanol fuel cell (DMFC) applications. In comparison with the SPPESK membrane, the SPPESK/silica membranes exhibited higher water content, improved proton conductivity, and lower methanol permeability. Notably, the silica embedded in the membrane acted as a material for reducing the fraction of free water and as a barrier for methanol transport through the membrane. From the results of proton conductivity and methanol permeability studies, we suggest that the fractions of bound and free water should be optimized to obtain desirable proton conductivities and methanol permeabilities. The highly sulfonated PPESK hybrid membrane (HSP-Si) displayed higher proton conductivity (3.42 ${\times}$ 10$^2$ S/cm) and lower methanol permeability (4.15 ${\times}$ 10$\^$7/ $\textrm{cm}^2$/s) than those of Nafion 117 (2.54 ${\times}$ 10$^2$ S/cm; 2.36 ${\times}$ 10$\^$6/ $\textrm{cm}^2$/s, respectively) at 30$^{\circ}C$. This characteristic of the SPPESK/silica membranes is desirable for future applications related to DMFCs.

키워드

참고문헌

  1. J. Electrochem. Soc. v.143 X. Ren;M. S. Wilson;S. Gottesfel https://doi.org/10.1149/1.1836375
  2. J. Power Sources v.4 N. A. Hampson;M. J. Wilars;B. D. McNicol https://doi.org/10.1016/0378-7753(79)85010-7
  3. J. Power Sources v.74 A. Kuver;W. Vielstich https://doi.org/10.1016/S0378-7753(98)00065-2
  4. J. Membr. Sci. v.203 S. P. Nunes;B. Ruffmann;E. Rikowski;S. Vetter;K. Richau https://doi.org/10.1016/S0376-7388(02)00009-1
  5. Nature v.414 C. H. Brian;Steels;H. Angelika https://doi.org/10.1038/35104620
  6. German Patent 1980,131C1 H. Dohle
  7. US Patent 5849428 R. P. Hamlen
  8. Solid State Ionics v.46 J. Kjar;S. Yde-Andersen;N. A. Knudsen;E. Skou https://doi.org/10.1016/0167-2738(91)90146-3
  9. Solid State Ionics v.119 Z. Plotarzewski;W. WieczorekJ. Przyluski;V. Antonucci https://doi.org/10.1016/S0167-2738(98)00518-9
  10. Solid State Ionics v.125 P. L. Antonucci;A. S. Srico;P. Creti;E. Ramunni;V. Antonucci https://doi.org/10.1016/S0167-2738(99)00206-4
  11. J. Appl. Polym. Sci. v.55 K. A. Mauritz;I. D. Stefanithis;S. V. Davis;R. W. Scheetz;R. K. pope;G. L. Wilkes https://doi.org/10.1002/app.1995.070550120
  12. Polymer v.34 A. Bunn;J. B. Rose https://doi.org/10.1016/0032-3861(93)90240-B
  13. J. Polym. Sci.:Polym. Chem. v.31 M. Ueda;H. Toyota;T. Ouchi;J. I. Sugiyama;K. Yonetake;T. Masuko;T. Teramoyo https://doi.org/10.1002/pola.1993.080310402
  14. US Patent 4,625,000 H. S. Chao;N. Y. Watervliet;D. S. Kelsey;N. J. Hillsborough
  15. J. Appl. Polym. Sci. v.20 A. Noshay;L. M. Robeson https://doi.org/10.1002/app.1976.070200717
  16. Polym. Adv. Technol. v.9 no.2 S. Holmberg;J. Nasman;F. Sundholm https://doi.org/10.1002/(SICI)1099-1581(199802)9:2<121::AID-PAT724>3.0.CO;2-M
  17. J. Polym. Sci. v.34 J. Kerres;W. Cui;S. Reichel https://doi.org/10.1002/(SICI)1099-0518(19960915)34:12<2421::AID-POLA17>3.0.CO;2-A
  18. J. Membr. Sci. v.83 R. Nolte;K. Ledjeff;M. Bauer;R. Mulhaupt https://doi.org/10.1016/0376-7388(93)85268-2
  19. J. Membr. Sci. v.173 S. M. J. Zaidi;S. D. Mikhailenko;G. P. Robertson;M. D. Guiver;S. Kaliaguine https://doi.org/10.1016/S0376-7388(00)00345-8
  20. J. Membr. Sci. v.153 S. Koter;P. Piotrowski;J. Kerres https://doi.org/10.1016/S0376-7388(98)00242-7
  21. J. Appl. Polym. Sci. v.79 Y. Dai;X. Jian;X. Liu;M. D. Guiver https://doi.org/10.1002/1097-4628(20010228)79:9<1685::AID-APP180>3.0.CO;2-L
  22. Polymer v.43 G. Xiao;G. Sun;D. Yan;P. Ahn;P. Tao https://doi.org/10.1016/S0032-3861(02)00365-8
  23. J. Polym. Sci. v.41 Y. Gao;G. P. Robertson;M. D. Guiver;X. Jian https://doi.org/10.1002/pola.10601
  24. J. Polym. Sci. v.41 Y. Gao;G. P. Robertson;M. D. Guiver;X. Jian;S. D. Mikhailenko https://doi.org/10.1002/pola.10820
  25. J. Membr. Sci. v.227 Y. Gao;G. P. Robertson;M. D. Guiver;X. Jian;S. D. Mikhailenko;K. Wang;S. Kaliguine https://doi.org/10.1016/j.memsci.2003.08.020
  26. J. Membr. Sci. v.166 N. Carretta;V. Tricoli;F. Picchioni https://doi.org/10.1016/S0376-7388(99)00258-6
  27. Chem. Phys. v.199 F. Wang;T. Chen;J. Xu
  28. J. Appl. Polym. Sci. v.68 Q. Deng;R. B. Moore;K. A. Mauritz https://doi.org/10.1002/(SICI)1097-4628(19980502)68:5<747::AID-APP7>3.0.CO;2-O
  29. J. Electrochem. Soc. v.148 N. Miyake;J. S. Wainright;R. F. Savinell https://doi.org/10.1149/1.1383071
  30. J. Electrochem. Soc. v.148 X. Ren;S. Gottesfeld https://doi.org/10.1149/1.1344521
  31. Separ. & Puri. Techn. v.18 P. Samuel;Kusumocahyo;S. Kenji;S. Masao;K. Mizoguchi https://doi.org/10.1016/S1383-5866(99)00060-X
  32. Polymer v.26 A. Higuchi;T. Iijima https://doi.org/10.1016/0032-3861(85)90254-X
  33. J. Membr. Sci. v.185 K. D. Kreuer https://doi.org/10.1016/S0376-7388(00)00632-3
  34. J. Polym. Sci. v.37 S. Hietala;S. L. Mauun;F. Sundholm;T. Lehtinen;G. Sundholm https://doi.org/10.1002/(SICI)1099-0488(19991015)37:20<2893::AID-POLB9>3.0.CO;2-4
  35. Prog. Polym. Sci. v.25 M. Rikukawa;K. Sanui https://doi.org/10.1016/S0079-6700(00)00032-0
  36. Chem. Mater. v.8 K. D. Kreuer https://doi.org/10.1021/cm950192a
  37. Macromolecules v.36 no.17 Y. S. Kim;L. Dong;M. A. Hickner;T. E. Glass;V. Webb;J. E. McGrath https://doi.org/10.1021/ma0301451