DOI QR코드

DOI QR Code

Kinetic and Thermodynamic Features of Combustion of Superfine Aluminum Powders in Air

  • Kwon, Young-Soon (Research Center for Machine Parts and Materials Processing, School of Materials and Metallurgical Engineering, University of Ulsan) ;
  • Park, Pyuck-Pa (Research Center for Machine Parts and Materials Processing, School of Materials and Metallurgical Engineering, University of Ulsa) ;
  • Kim, Ji-Soon (Research Center for Machine Parts and Materials Processing, School of Materials and Metallurgical Engineering, University of Ulsa) ;
  • Gromov, Alexander (Tomsk Polytechnic University) ;
  • Rhee, Chang-Kyu (Korea Atomic Energy Research Institute, Nuclear Materials Development Team)
  • Published : 2004.08.01

Abstract

An experimental study on the combustion of superfine aluminum powders (average particle diameter, a$_{s}$: ∼0.1 ${\mu}{\textrm}{m}$) in air is reported. The formation of aluminum nitride during the combustion of aluminum in air and the influence of the combustion scenario on the structures and compositions of the final products are in the focus of this study. The experiments were conducted in an air (pressure: 1 atm). Superfine aluminum powders were produced by the wire electrical explosion method. Such superfine aluminum powder is stable in air but once ignited it can burn in a self-sustaining way due to its low bulk: density (∼0.1 g/㎤) and a low thermal conductivity. During combustion, the temperature and radiation were measured and the actual burning process was recorded by a video camera. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and chemical analysis were performed on the both initial powders and final products. It was found that the powders, ignited by local heating, burned in a two-stage self-propagating regime. The products of the first stage consisted of unreacted aluminum (-70 mass %) and amorphous oxides with traces of AlN. After the second stage the AlN content exceeded 50 mass % and the residual Al content decreased to ∼10 mass %. A qualitative discussion is given on the kinetic limitation for AlN oxidation due to rapid condensation and encapsulation of gaseous AlN.N.

Keywords

References

  1. Combustion of Powdered Metals in Active Media P. F. Pokhil;A. F. Belyaev;Y. V. Frolov;V. S. Logachev;I. A. Korotkov
  2. Fundamentals of Solid Propellant Combustion K. K. Kuo;M. Summerfield
  3. Combust. Flame v.117 E.L. Dreizin https://doi.org/10.1016/S0010-2180(98)00125-4
  4. Combust. Flame v.125 J. Servaites;H. Krier;J. C. Melcher;R. L. Burton https://doi.org/10.1016/S0010-2180(01)00225-5
  5. Propellants, Explosives, Pyrotechnics v.24 Z. Ji;L. Shufen https://doi.org/10.1002/(SICI)1521-4087(199908)24:4<224::AID-PREP224>3.0.CO;2-I
  6. Combust. Flame v.115 Y. Zhu;Y. Saburo https://doi.org/10.1016/S0010-2180(97)00363-5
  7. Combust. Explos. Shock Waves v.11 V. M. Gremyachkin;A. G. Istratov;O. I. Leipunskii https://doi.org/10.1007/BF00740536
  8. Combust. Explos. Shock Waves v.19 V. M. Boborykin;V. M. Gremyachkin;A. G. Istratov;V. I. Kolesnikov-Svinaryov;G. P. Kuznetsov;O. I. Leypunskiy;V. M. Puchkov https://doi.org/10.1007/BF00782848
  9. Combust. Flame v.105 E. L. Dreizin https://doi.org/10.1016/0010-2180(95)00224-3
  10. Combust. Flame v.108 S. Yuasa;Y. Zhu;S. Sogo https://doi.org/10.1016/0010-2180(95)00104-2
  11. Combust. Flame v.121 M. T. Swihart;L. Catoire https://doi.org/10.1016/S0010-2180(99)00128-5
  12. Combust. Sci. Tech. v.135 M. M. Mench;K. K. Kuo;C. L. Yeh;Y. C. Lu https://doi.org/10.1080/00102209808924161
  13. Oxidation of Aluminum and Boron Superfine Powders A. P. Ilin;A. A. Gromov
  14. Scripta mater. v.44 Y. S. Kwon;Y. H. Jung;N. A. Yavorovsky;A. P. Ilyin;J. S. Kim https://doi.org/10.1016/S1359-6462(01)00757-6
  15. Combust. Explos. Shock Waves v.37 A. P. Ilin;A. A. Gromov;V. I. Vereshchagin;E. M. Popenko;V. A. Surgin;H. Lehn https://doi.org/10.1023/A:1012928130644
  16. Propellants, Explosives, Pyrotechnics v.25 T. D. Fedotova;O. G. Glotov;V. E. Zarko https://doi.org/10.1002/1521-4087(200012)25:6<325::AID-PREP325>3.0.CO;2-C
  17. Combust. Explos. Shock Waves v.26 A. P. Ilin;L. T. Proskurovskaya https://doi.org/10.1007/BF00742409
  18. Amer. Ceram. Soc. v.77 T. Tsushida;T. Hasegawa;M. J. Inagaki https://doi.org/10.1111/j.1151-2916.1994.tb04574.x
  19. Materials and Manufacturing Processes v.10 F. J. - M. Haussone https://doi.org/10.1080/10426919508935062
  20. Combust. Explos. Shock Waves v.35 A. P. Ilin;A. P.;A. A. Gromov;G. V. Yablunowskii;E. M. Popenko;N. V. Bychin https://doi.org/10.1007/BF02674539
  21. Journal of Mater. Process. Technol. v.56 A. G. Merzhanov https://doi.org/10.1016/0924-0136(95)01837-9
  22. Fundamental Problems of Developing Advanced Materials and Processes of the XXI Century (AMP99) V-th Russian-Chinese International Symposium "ADVANCED MATERIALS AND PROCESSES" A. P. Ilin;A. A. Gromov;V. I. Vereshchagin
  23. Combust. Explos. Shock Waves v.36 A. P. Ilin;V. V. An;V. I. Vereshchagin;G. V. Yablunovskii https://doi.org/10.1007/BF02699362
  24. Combust. Explos. Shock Waves v.35 V. G. Shevchenko;V. I. Kononenko;I. A. Chupova;I. N. Latosh;N. V. Lukin