Ca-Ce-Hf-Ti-O System에서의 파이로클로어 합성

Synthesis of Pyrochlore in the System of Ca-Ce-Hf-Ti-O

  • 채수천 (한국지질자원연구원 자원활용소재연구부) ;
  • 배인국 (한국지질자원연구원 자원활용소재연구) ;
  • 장영남 (한국지질자원연구원 자원활용소재연구) ;
  • ;
  • ;
  • ;
  • S. V. Yudintsev
  • 발행 : 2004.08.01

초록

장주기 방사성 폐기물인 악티나이드 원소들을 고정화시킬 수 있는 파이로클로어 (pyrochlore; CaCeH$f_xTi_{2-x}O_7$=0.2, 0.6, 1.0, 1.4, 1.8, 2.0)를 합성하여 상평형 관계 및 특성을 연구하였다. 혼합된 시료는 상온에서 400kg/$cm^2$의 압력으로 성형한 후, 산소분위기에서 1200∼1$600^{\circ}C$ 범위로 소결온도를 변화시키면서 소성하였다. 합성된 시료는 XRD를 사용하여 상분석을 실시하였다. 실험결과, 파이로클로어의 최적 합성조건은 산소분위기 하에서, 각각의 조성에 따라, 1300∼150$0^{\circ}C$로 매우 다양하였다. 합성시 생성된 상으로는 페롭스카이트, 파이로클로어 및 $A_{2}BO_{5}$산화물 등이 있으며, 본 계의 특성은 Hf의 함량증가에 따라 페롭스카이트 및 파이로클로어의 격자상수가 증가한다는 점이다. 이같은 현상은 육배위 자리를 차지하고 있는 Hf와 Ti의 이온반경의 차이에서 비롯된 것이다.

Pyrochlore was known as one of the most promising materials for the immobilization of radioactive actinide. This study includes the synthesis, phase relation and characteristics of pyrochlores (CaCeH$f_xTi_{2-x}O_7$=0.2, 0.6, 1.0, 1.4, 1.8, 2.0) in the system of Ca-Ce-Hf-Ti-O. The samples were prepared from high purity of starting materials under the pressure of 400kg/cm$^2$ at room temperature, and were sintered at 1200∼1$600^{\circ}C$ The synthesized samples were analyzed and identified with XRD. The optimal formation conditions of pyrochlores were at 1300∼150$0^{\circ}C$ under $O_2$ atmosphere with batch compositions. During synthesis, pyrochlore, perovskite and $A_{2}BO_{5}$ oxide were formed. The characteristics of this system is that parameter of pyrochlore was increased with the content of hafnium. This phenomenon was due to the difference of ionic size between hafnium and titanium in six coordinated site.

키워드

참고문헌

  1. Am. Sci. v.41 Ultimate disposal of radioactive wasters Hatch, L.P.
  2. J. of Nuclear Materials v.281 Preparation and characterisation of Pu-pyrochlore: $[La_{1-X}Pu_x]2Zr_2O_7(x=0.1)$ Kullkarni, N.K.;Sampath, S.;Venugopal, V. https://doi.org/10.1016/S0022-3115(00)00336-6
  3. Proceedings of International Meeting on Nuclear and Hazardous Waste Management / (Spectrum 98) Actinides containment by using zicronolite-rich Synroc Luo, S.;Zhu, X.;Tang, B
  4. J. Mater. Sci. v.8 Quartz-Matrix isolation of radioactive wasters McCarthy, G.J. https://doi.org/10.1007/BF00549353
  5. Trans. Am. Nucl. Soc. v.23 High-level waste ceramics McCarthy, G.J.
  6. Am. Ceram. Soc. Bull. v.54 Ceramic nuclear waste forms: 1 McCarthy, G.J.;Davidson, M.T.
  7. Mineralogical Magazine v.49 Disposal of high-level nuclear waste: a geological perspective Ringwood, A.E. https://doi.org/10.1180/minmag.1985.049.351.04
  8. Radioactive waste forms for the future Ringwood, A.E.;Kesson, S.E.;Reeve, K.D.;Woolfrey, J.L.;Ramm, E.J.;W. Lutze(ed.);Ewing R.C.(ed.)
  9. Ceram. Soc. Bull. v.54 Ceramic Science of nuclear waste fixation; for abstract see A. Roy,R.
  10. Acta Crystallographica A v.32 Revised effective ionic radii and systematic studies of interatomec distances in halides and chalcogenides Shannon, R.D. https://doi.org/10.1107/S0567739476001551
  11. Acta Crystallo-graphica B v.25 Effective ionic radii in oxides and fluorides Shannon,R.D.;Prewitt,C.T. https://doi.org/10.1107/S0567740869003220
  12. MRS Symposia Proceedings v.353 Zirconolite-rich ceramics for actinide wastes. In: Scientific Basis for Nuclear Waste Management-XVIII Vance, E.R.;Begg, B.D.;Day, R.A.;Ball, C.J.
  13. Solid State Ionics v.158 Electrical conductivity anomaly around fluorite-pyrochlore phase boundary Yamamura, H.;Nishino, H.;Kakinuma, K.;Nomura, K. https://doi.org/10.1016/S0167-2738(02)00874-3
  14. J. Am. Cerm. Soc. v.60 Radiational molecular engineering of ceramic materials Roy, R. https://doi.org/10.1111/j.1151-2916.1977.tb15559.x