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Abstract

In this paper, we investigate the limiting distribution of the Ljung-Box test statistic
in the unit root AR models with ARCH errors. We show that the limiting distribution
is approximately chi-square distribution with the degrees of freedom only depending
on the number of autocorrelation lags appearing in the test. Some simulation results
are provided for illustration.
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1. Introduction

In time series analysis, selecting a suitable model for given time series is a primary task since
further inferences are based on it. In model selection procedure, one chooses a tentative model
through the model selection criteria such as AIC (Akaike’s information criteria) and BIC
(Bayesian information criterion), and then conducts a diagnostic check for the tentative model.
For a diagnostic test in stationary ARMA models, Box and Pierce (1970) proposed a test statistic
based on the sum of autocorrelations of residuals, and showed that it is approximately distributed
as a chi-square distribution. Later, Davis, Triggs and Newbold (1977) and Ljung and Box (1978)
demonstrated that a modified statistic gives a closer small sample approximation to the
chi-square distribution. More recently, Monti (1994) suggested a diagnostic test based on the
residual partial autocorrelation, and Kwan and Wu (1997) investigated the finite sample
performance of Monti's test.

The Ljung-Box (LB) test has long been popular among practitioners deeming its convenience.
Basically, it tests for the uncorrelatedness of the errors in stationary ARMA models, and has
become a very useful diagnostic tool. However, one should be careful in utilizing the chi-square
approximation result since it can be affected by models and parameter estimations. For instance,
one can easily see this phenomenon when a trimmed mean estimator of the autoregressive
parameter in stationary AR(1) models is utilized. Therefore, one must check whether the
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assumptions for the Ljung-Box conditions are satisfied or not.

As with the estimators, the number of lags of autocorrelations in the LB test plays an
important role as to its performance. For instance, if the number is too large, the test suffers
from severe size distortions and the power of the test decreases. To overcome such a problem,
Hong (1996) proposed a test statistic using all available autocorrelations, where he gave lower
weights to large lags for alleviating the influence from the large lags. Hong's method also merits
to remove the influence of the parameter estimators.

Meanwhile, Mcleod and Li (1983) proposed to use the test based on squared residuals in
ARMA models motivated by an intent to emphasize its usefulness in detecting nonlinear type
statistical dependency (cf. Granger and Anderson, 1978). According to their analysis, the limiting
distribution does not depend on the orders of ARMA models, but on the number of
autcorrelations appearing in the LB test. See also the discussion in Tong (1990), page 225.

The goal of this paper is not to generalize the tests mentioned above but to investigate the
limiting distribution of the LB test statistic when the given model is the unit root AR(1) model
with ARCH (autoregressive conditional heteroscedastic) errors. Both unit root and ARCH
models are very famous in econometrics, but to our knowledge there are no results on LB test
for unit root AR(1)-ARCH models. In Section 2, we show that the LB test statistic is
approximately chi-square distributed. Some simulations are provided for illustration in Section 3.

2. LB Test in Unit Root AR-ARCH Model

We consider the unit root model with the ARCH error,
Ye— Y1 = €,
where ¢ =1 and {€} follows the first-order ARCH model, denoted as
& = &0y, U? = w+ae_1,
and w> 0, @ 2 0 and &;'s are iid random variables with zero mean and unit variance.

Let 3)" be the least squares estimator of ¢. Based on the least squares residual

€= % —Pulh-1,
we calculate the residual correlation at the lag h,
n—nh . - -
A 2(€t+h_€ Je:—e€)
r(h) ==L ,h=1m,

zo. 7
E(Gt —e )
=1
by LN
where ¢ = Eet/n and m is a positive integer. We define the LB test statistic
=1

Q.(m) =n(n+2)£}1 (n=h)"'r (h).
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Then it turns out that
Q.(m) =X 2.1)

The above means that the limiting distribution of the LB test statistic in unit root AR(1) model
with ARCH errors does not depend on the order of autoregressive, whereas the LB test statistic
in the stationary ARMA(p, q) model follows approximately a chi-square distribution with degrees
of freedom m —p—q when both m and n are large enough (cf. Ljung and Box, 1978). The

following theorem deals with the residuals of AR(1) model and directly ensures the result as in
2.1).

Theorem. Suppose that {y,} satisfies that
—Yy_1=€, %=0
where {€} forms a stationary martingale difference sequence with ol = E(ef) < oo, If

~1< ¢<1, and &, is an estimator of ¢ such that

Vn(@,—¢)=0p(1) for |91

and

-~

n(@p,—¢)=0p(l) for ¢=1
then

1 n
\/—t_1€t+h€t = 726t+h€t+0P 1),

where €; =y, — @ nYs—1-
Proof. We only prove the case that ¢ = 1 since the other case is simple. Write that for the
fixed h,

t+h€t

€+ €t — \/- —¢) Eyt-f-h 1€¢ (2.2)

n—h

(n— Eyt 1€ +nt+—F=

L
e
_L_
v
1 1
TR o2 v

n—nh
—¢)2231yt+h—lyt—l'
t=

Note that

n—h n—h n
E(Zyt+h—1€t)2= E[Eyt—let"‘ E (€, + '“+€t+h—1)€t]2 < 0(n?).

t=1 t=1 t=1

Hence,
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(an—¢>jgyt+h_let = J=0r(1) = 0p(1).

-

Similarly,
1 . _
_\/— d’ Z} t—1€t+h—0P(1)

and the last term in (2.2) is p(l ), too. Therefore, the theorem is proved.

Remark. It is well-known that the least squares estimator for the autoregressive coefficient
satisfies the stochastic boundedness condition (cf. Hamilton (1994)). A typical and important
example for the stationary martingale difference error process is the ARCH process. The above
result is somewhat interesting since the nonstationary feature does not affect the limiting
distribution.

3. Simulation Study

We consider the model
Y=Yh-1T &
where {&} is an ARCH(1) process. For calculating the empirical sizes and powers at the
significance level 0.05, sets of 200, 500 and 1000 observations are generated from the above
model. In each simulation, 200 observations are discarded to remove initialization effects. For the
simulation, we use independent 1000 replications. The figures of Table 1 indicate the ratios of the
number of rejections of the null hypothesis,
Hy: €'s are martingale difference sequences.
In order to investigate the empirical sizes, we consider
€ = &0, 02=0.34+05€6_,,
where & are iid random variables and follow a standard normal distribution. Meanwhile, to see
the power, we focus on the alternative
e =02_,+&,

where & are iid random variables and follow a standard normal distribution.

As mentioned above, under Hj, the LB test statistic, @,(m) follows approximately a
chi-square distribution with m degrees of freedom, for which we choose 2, 5, 10 and 15. From

Table 1, we can see that the LB test statistic has some size distortions for larger lags, but these
size distortions tend to decrease as n increases. We observe that the test statistic yields good

empirical powers as n increases. However, when the sample size is relatively small, the empirical
powers seriously decrease as m increases. Accordingly, for utilizing the LB test, we need to
employ the large sample. Especially, larger sample should be adopted in the case of large lags.



Ljung-Box Test in Unit Root AR-ARCH Model 327

From our results, we conclude that the LB test statistic can be employed as a suitable
diagnostic tool for model checking in unit root AR models with ARCH errors. We leave the case
of the unstable AR(p) model with GARCH(p, q) errors as a task of future study.

<Table 1> Empirical sizes and powers in unit root model with ARCH(1) errors

Size Power
m 2 10 15 20 2 10 15 20
n=200 .060 074 069 075 760 523 459 423
n=500 .058 .069 072 078 989 928 846 819
n=1000 052 .051 060 065 999 997 996 991
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