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Abstract

A fixed-strike lookback option is an option whose payoff is determined by the
maximum (or minimum) price of the underlying asset within the option’s life. Under
the Black-Scholes framework, the time-t price of an equity asset follows a geometric
Brownian motion, Applying the method of Esscher transforms, this paper will derive
explicit pricing formulas for fixed-strike lookback call and put options, respectively.
In addition, this paper will show a relationship (duality property) between the pricing
formulas of the call and put options. Finally, this paper will derive explicit pricing
formulas for the fixed-strike lookback options when their underlying asset pays
dividends continuously at a rate proportional to its price.
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1. Introduction

Suppose an investor believes that a stock will rise substantially in the next three months
and buys a plain-vanilla call option with a maturity of three months. After the purchase, the
stock rises to a satisfactory level. But the stock drops unexpectedly a few days before
maturity. Though the investor has forecasted the stock’s overall trend correctly, he receives
a lesser payoff than if he had sold the option a few days earlier. As pointed out in Heynen
and Kat (1994a), plain-vanilla options have a drawback in that incorrect timing of market exit
can seriously affect even option holders with a largely correct view. Heynen and Kat
suggested fixed-strike lookback options as alternatives to plain-vanilla options.

A fixed-strike lookback option is an option whose payoff is determined by the maximum (or
minimum) price of the underlying asset within the option’s life. This option looks like a
plain-vanilla option except that the underlying asset price at maturity is replaced with its
maximum (or minimum). In other words, the payoff of a fixed-strike lookback call option is
the excess of the maximum price over the strike price if the maximum price is greater than
the strike price. The payoff of a fixed-strike lookback put option is the excess of the strike
price over the minimum price if the minimum price is less than the strike price. When the
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underlying asset drops (or increases) substantially at maturity,- these options provide the
holders with better payoffs than the corresponding plain-vanilla options.

Conze and Viswanathan (1991) derived explicit pricing formulas for fixed-strike lookback
options whose monitoring period is the whole life of these options. A drawback is that these
options are expensive. The high premiums of the fixed-strike lookback options prevent them
from being widely used. To overcome this drawback, Heynen and Kat (1994a) presented
explicit pricing formulas for fixed-strike lookback options whose monitoring period starts at an
arbitrary date before maturity and ends at maturity.

However, in their paper, there is no complete proof for the formulas. This paper will derive
explicit pricing formulas that are equivalent to formula (13) of Heynen and Kat. Section 2
will describe the method of Esscher transforms. Sections 3 and 4 will cover the fixed-strike
lookback call and put options, respectively. In addition, Section 4 will show a relationship
between the pricing formulas of the call and put options. If negative one multiplies some
parameters of the call option formula, then the call option formula will be the negative of the
time-0 value of the corresponding put option, and vice versa. In other words, if one of the
two formulas is obtained, the other one can be straightforwardly derived. Finally, Section 5
will derive explicit pricing formulas for the fixed-strike lookback options when their
underlying asset pays dividends continuously at a rate proportional to its price. These pricing
formulas are generalizations of the pricing formulas in Sections 3 and 4.

2. Esscher Transform and Some Useful Formulas

This section describes the method of Esscher transforms and presents some formulas useful
for pricing lookback options. Let S(t) denote the time-t¢ price of an equity asset. Assume
that the asset is constructed with all dividends reinvested. Assume that for ¢t > 0,

S(t) = §(0)eX® (2.1)
where {X(t)} is a Brownian motion with drift u, diffusion coefficient ¢ and X(0) =0. Thus,
the Brownian motion is a stochastic process with independent and stationary increments, and
X(t) has a normal distribution with mean ut and variance o’t .

First, this section briefly summarizes a special case of the method of Esscher transforms
developed by Gerber and Shiu (1994, 1996). For a nonzero real number A, the moment
generating function of X(t), E[e"*®], exists for all ¢=>0, because X(t) is the Brownian
motion as described above. The stochastic process

{th(t)E[th(l)]—t} (2.2)
is a positive martingale which can be used to define a new probability
measure Q. More precisely, this process is used to define the Radon-Nikodym derivative
dQ/dP, where P is the original probability measure. We call @ the Esscher measure of
parameter hA.
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For a random variable Y that is a real-valued function of {X(¢),0 <t < T}, the expectation

of Y under the new probability measure @ is calculated as

hX(T)
E[YE[th(l)]T]

(2.3)
which will be denoted by E[Y;h]. The risk-neutral Esscher measure is the Esscher measure
of parameter h = h* under which the process {e "S(t)} is a martingale. Here, r denotes
continuously compound interest rate. Thus

Ele "S(t);h" ] = S(0). (2.4)
Therefore, h* is the solution of

p+h'el=r—dt . (2.5)

For t > 0, the moment generating function of X(¢) under the Esscher measure of parameter

h is

EleX®:n) = exp {(u+ ho® Ytz + o*t2 2 }, (2.6)
which implies that X(¢) has a normal distribution with mean (u+ ho?)t and variance o’t
under the Esscher measure. It can be shown in (A.1) and (A.2) of the Appendix that the
process {X(t)} under the Esscher measure has independent and stationary increments. Thus,
the process is a Brownian motion with drift x4+ ho? and diffusion coefficient ¢ under the
Esscher measure of parameter A.

Now, let us consider a special case of the factorization formula (Gerber and Shiu, 19%4, p
177, 1996, p 188). For a random wvariable Y that is a real-valued function of
{X@#),0<t=< T},

EleX D y:h] = EleXD:R)E[Yih + ¢] @27
In particular, for an event B whose condition is determined by {X(t),0 <t < T}, the formula
(2.7) can be expressed as follows:

E[eX TN [(B);h] = EleXD;h]Pr Bk + ¢, (2.8)
where I( - ) denotes the indicator function and Pr(B;h) denotes the probability of the event
B under the Esscher measure of parameter A.

Now, let us discuss some basic formulas useful for pricing lookback options. For
0<s<t let

M(s,t) =maz{X(r),s <7<t} (2.9
be the maximum of the Brownian motion between time s and time £. Consider a bivariate
standard normal distribution. Note that

b, (a,b;p) = Dy (b,a;p) (2.10)
and
&(a)—Dy(a,bp) =DPy(a,—b;—p), (2.11)

where @,(a,b;p) denotes the bivariate standard normal distribution function with correlation
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coefficient p. In the Appendix, we shall prove that, if —pb+ \/I_ :07c =gq and p = 0, then

G, (a,b;—p)+ Py (—a,c;~ V1—p*) =B (b)P(c) (2.12)
and
By (a,b;—p) +P(—b)P(c) =D,(a,c;vV1—p?), (213

which will play a role in the proof of (3.5).
Let a random vector Z = (4, %, Z) have a standard trivariate normal distribution with

correlation coefficients Corr(Z, Z) = oy (i, j = 1, 2, 3). The distribution function of the

random vector Z is
P3(a, b, c; Oyg , 013, 093) = Pr(4 < a, < b, = o).

For 0 < s <t < T, the joint distribution function of X(7°) and M(s,t) is
Pr{M(s,t) <m,X(T) < z)

—& (x—uT m—ut m—us. [t [|s _s_)
N odT ok ovs VTNT
02 z—2m—ul —m— ut m+us / [s [s
—€ @( U\/T 2 o 2 T,' T} ) (214)

which is proved in Lee (2003). For numerical implemetatxon of multivariate normal distribution
functions, see Drezner (1978, 1994). If variable x in (2.14) approaches infinity, the distribution
function (2.14) will be

PriM(s, £) < m)

2
— m— ut m— ys / z —m—ut m+us, [s 215
Sp2( U ) e’ ¢2 0_\/'{ ’ 0_\/; ) t) (2.15)

Finally, let us discuss expectations necessary for deriving formulas for fixed-strike lookback

options. Let random variable X be normal with mean u and variance O . Let random
variables Z follow the standard normal distribution. We assume that a, b and 8 are real

numbers, and 01 > 0. We also assume that Z is independent of X. Then,
ElI(X < a)QS(@)] = E[I(X < a)EI(Z < ﬁ)—f‘i-b- | X11
1

1

El(X < a, Z < 8X+by)

g1
= Pr{X < a, &1Z - 6X < b}
Y Al G 1 L S M (2.16)

o \/5205+0§1’ ’ 1/520§+071

A generalized version of (2.16) can be calculated as follows:



Pricing Lookback Options 217

hX 0X+ b\ _ pronx 6X+b
Ele"*1(X < a)®( o) )1 = Ele ]E[E[hX IX < a® (= o )]
Lo
NGRS E[1<X<a>¢(@);h]
1

wh + Lo

S A N Y ) S S AR Y3
o VO + o JO+ b

where W, denotes u+ ho?®. Note that the first and second equalities of (2.17) come from the

factorization formula (2.7) and that the last equality of (2.17) holds because of (2.16).

3. Fixed—-Strike Lookback Call Option

As mentioned above, the payoff of a fixed-strike lookback call option is the excess of the
maximum price over the strike price if the maximum price is greater than the strike price.
The fixed-strike lookback call option looks like the plain-vanilla call option except that the
underlying asset price at maturity is replaced with the maximum price attained within a
partial life of the option. In this section, we shall derive an explicit pricing formula for the
fixed-strike lookback call option.

Assume that the strike price is K. Let k = log(K/S(0)). The payoff of this fixed-strike
lookback call option is as follows:

(5(0)eM* T — KVI(M(, T) = k). (3.1)
Applying the fundamental theorem of asset pricing, we obtain the time-0 value of (3.1),
e "TE[(S(0)eMe D — K)I(M(t, T) = k);h*], 3.2)
which can be divided into two terms,
e T[S0 ElMED [(M, T) = k);h*]— KPr (M@, T) = kh*)]. (3.3)

Here, applying (2.15), we can obtain the probability term in (3.3) as follows:
Pr(MtT)>k)
=1-Pr(Mt,T) <k)

[sz(k uT’k—yt \/_)_e., &, ( -:\/_;T k+\;t _ \/%:’)}
=: P,(u, k) (3.4)
If the parameter y& in formula (3.4) is replaced by r — ¢*/2, then the probability term in (3.3)
is P(r—da*R).
Now, let us consider the expectation in (3.3). It will be proved in the Appendix that for a
nonzero real number ¢, c+ £ 0 and ¢ = 2u/0?,
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EleMeDI(M(t, T) > k)]
_ 2c+§ewT+%°’°’T¢2(-—k+(u-i—ccrz)T lutel(T=t) _ [t

c+¢ o/t ’ ovVT—t ' T
+ £ etk k+ut, k+uT [t
c + 2( U\/t )
+ § c"t+—c (—k:+(u+caz)t )@(_N(T—t) )
c+E° o+t ovT—1
=: L (u,c, k). (3.5)
If the parameter ft in formula (3.5) is replaced by r— o2 and c is equal to one, then the
expectation term in (3.3) is L (r—o%*/2,1,k). Applying the probability (3.4) and the
expectation formula (3.5), we have the time-0 value of the fixed-strike lookback call option,
e—-rT [S(O )Il (T - 02/2; 1, k) - KP2 (T - 02/27 k)]; (36)

which can be rewritten as
—k+(r+-%—cr2)T (r+%a2)(T—t)
ovT ’ ovT—1

$2r k+(r—-—;—02)t k+(r——02)T \/7
T )

S(0)(Z- + 1), ( 1=

- 8(0)5- O 1T g, (

ovit
1l o 2
I —k+(r+50°)t ('r-—Ea WT—t)
+50)(1—3-)e (T=t)g ( o~ )® (— 5T
k—(r—L)T k—(r—Lo?)t
+ ¢ "TK+ e TKD, ( a\/%' , o\/f? ,\/—%)
=: Vazu(S(O);K;T;U)- 3.7

Finally, let us show that the probability formula (3.4) is a special case of the expectation
formula (3.5). If ¢ is zero, formula (3.5) is

@2(_5%]1 .U'(T—t) /

2y
-+-e"2

(ktpt  ktpT [T

ovt’' oT'’
— k4 ut T—t
+& (—d—ﬁ& )& (— J;J\/T——_;% ). (3.8)
The second term in (3.8) is the same as the last term in (3.4). To prove that the probability
formula (3.4) is a special case of formula (3.5) when c is zero, it is sufficient to show that
the sum of the first and last terms in (3.8) is equivalent to the sum of the first two terms on
the right-hand side of (3.5). By applying formula (2.11) to the first and last equalities of
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(39) and by applying (2.13) to the second equality of (3.9), the sum of the first and last
terms in (3.8) can be calculated as follows:

Qz(—k'f'[llT [J,(T"'t) 1__)+¢( k+ut)¢( IUIL—t))

oVT o Tt ok N oI
=0, (RLT MISH i L) o hti e Tl ) 4 o kbt
= o, (“EEAT kot L) gkt
=¢2(—5%T,’°a‘;t;—\/;>+1—¢<7*¢/;—>

=1- qs(’c “T k— “t\/—) 3.9)

4. Fixed-Strike Lookback Put Option

It will be recalled that the payoff of a fixed-strike lookback put option is the excess of the
strike price over the minimum price if the minimum price is less than the strike price. The
fixed-strike lookback put option looks like the plain-vanilla put option except that the
underlying asset price at maturity is replaced with its minimum attained within a partial life

of the option. In this section, we shall derive an explicit pricing formula for the fixed-strike
* lookback put option.

The payoff of this lookback put option is as follows:

(K~ 50)e™tNI(m (¢, T) < k), (4.1)
where m(t, T) denotes the mimimum of the Brownian motion between time t and time 7. In
other words,

m(t, T) = min{X(1),t <1< T}.

Applying the fundamental theorem of asset pricing, we obtain the time-0 value of (4.1),

e TE[(K— S0)e™ ) I(m (¢, T) < k);k"], (4.2)
which can be divided into two terms,
—e "T{S(0)E[™ " DI(m(t, T) < k);h"]— KPr(m(t,T) < k,h")}. (4.3)

The expectation of (4.3) under the original probability measure can be easily calculated as
follows:

Ele™*DI(m(t, T) < k)]
= Ele ™MD 1(M(t, T) >— k); — €]
- Ji (—' H,— C,— k)

cc-:_é uT+ 5 c’aT!p2(_k+(§u\/_+__Tcg2)T (u+ca2)(T t) / )
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£ (c+6 kg, k+upt k+pT [t
+ € 2(0_ 7 0_\/?.7 T)

c+¢&
cut+5o%  — ft (ot co)t _u(T—t)
" c+§ 7 27 g ( e )& ( T ), (4.4)

where Y(x) := ®(-x) and ¥, (x, y;p) := Po(-x, ~y;p). Applying
mt, T) = - max{—X(7),s <7<t}
and the fact that {X(¢)} is a Brownian motion with drift
p—Ego® = —p
and diffusion coefficient O under the Esscher measure of parameter — &, we obtain the first
equality of (4.4). Note that formula (44) is the same as formula (3.8) except that the
symbols @ and Py are replaced by ¥ and Ws, respectively. In addition, we obtain the

probability of (4.3) under the original probability measure,
PB(mtT)<k)=P (Mt T)>—k—¢§)
=Py(— p—k). (45)
Applying the facts which we have done in the first equality of (4.4), the first equality of (4.5)
holds. Hence, applying (4.4) and (45) to (4.3), we see that the time-0 value of the
fixed—strike lookback put option is
- e—'l‘T [S(O )‘Ii. (_ r+ 02/2}_ 11—- k) - KP2 (_. r+ 02&;_ k)]) (4.6)
which can be rewritten as
2 ~k+(r+ 1) T (r+50)(T—1) .
—150)(— +1)¥ wl——=
{()(2T+)2( O'\/T b a\/-T—-_t T)

1 1
N -1 -iAT
—S(O)ie—rTek"zW k+(r 202)t _ k+(r 202) . :
o 2 ot ovT 0 NT

%\ _r(rt) —k+(r+%a2)t (r——%az)(T—t)

k——(r—-;—az)T k—(r——%—oz)t.\/—t—)}
oT ’ ot VT

=: Vp, (S(0),K,r,0). @7

Now, let us show a relationship between the pricing formulas (3.7) and (4.7) of the

fixed-strike lookback options. Formulas (3.6) and (4.6) are the same as (3.7) and (4.7),

respectively. If -1 is multiplied by some parameters of (3.6), then the expression (3.6) will be

the expression (4.6). Note that
th(s(o);KT:U)= - Vcau(S(O);K;T;"‘U), (4.8)

—e K+ e TR, (

and
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VCbll(S(O);K;r;U)z - VPut(S(O)JK;T;—a)~ (4.9)
In other words, the put option formula (4.7) is the negative of formula (3.7) with its

components @ and Qz replaced by ¥ and Wz, respectively.

5. Continuous Constant-Yield Dividend

Sections 3 and 4 have derived the pricing formulas for the fixed-strike lookback options
whose underlying asset pays no dividends. This section will derive explicit pricing formulas
for these fixed-strike lookback options when their underlying asset pays dividends
continuously at a rate proportional to its price. As was done in Section 2, let S(¢#) denote the
time-t price of an underlying asset. Assume that § is the constant nonnegative dividend yield

rate for the asset such that the asset pay dividends 8S(t)dt between time t and time t + dt.
If all dividends of the asset is reinvested in the asset, each share of the asset at time 0
grows to e® shares at time ¢t. In other words, if an investor buys one share of the asset at
S(0) and reinvests all dividends in the asset, his fund value invested will be

e®S(t) = e%S(t)exp(X(t)) (6.1)
at time ¢ Here, {X(t)} is a Brownian motion with drift u, diffusion coefficient o and
X(0)=0. Thus, the risk-neutral measure is the Esscher measure of parameter h = h*  with

respect to which the process

(e~ =9t 5(¢)) (5.2)
is a martingale. Therefore, h*~ is the solution of
p+ao*h” = r—§—d2/2. (5.3)

Note that the process {X(f)} is the Brownian motion with drift x+ o%h’" and diffusion
coefficient ¢® under the risk-neutral measure. For further discussion, see Section 9 of Gerber
and Shiu (1996).

Let us derive a pricing formula for the fixed-strike lookback call option. Applying the
fundamental theorem of asset pricing, we obtain the time-0 value of this option

e "TE[(S(0)eMT) — K)I(M(t, T) = k);h""], (5.4)

whose Esscher parameter h** can be obtained in equation (5.3). The discounted expectation
(5.4) can be divided into two terms,

e T [SO)EMCDI(ME, T) = k);p™" ) — KPr(Mt, T) = ki), (65)
whose expectation and probability are the same as those of (3.6) except that their drift term
r—o*/2 is replaced with r—&§— 02/2. Applying formulas (3.5) and (3.4) to (55), we have the
time-0 value

e "T[SO),(r—6—02/2,1,k)— KP,(r— 6— 0*/2,k)]
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=e TV (S(0),K,m—6,0). (5.6)
Now, to derive a pricing formula for the fixed-strike lookback put option, we apply the
fundamental theorem of asset pricing and obtain the time-0 value of this option,
e TE[(K—S0)e™ ) I(m (t, T) < k);h""), (5.7)
which can be divided into two terms,
—e "T{S(0)E[e™*DI(m(t, T) < k):;h"" | —KPr(m(t, T) < k;h™")}. (5.8)
It follows from formulas (4.4) and (4.5) that (5.8) becomes
—e T[S0V, (—r+ 6+ 02, ~1,— k)~ KP,(—r+ 6+ 0% /2,— k)]
= e TVp,(5(0),K,r—6,0).
To conclude this paper, we would point out that there are many books on the mathematics
of finance, including Baxter and Rennie (1998), Cochrane (2001), Haug (1998), Jackel (2002),
Lamberton and Lapeyre (1996), Lyuu (2002) and Zhang (1998).

(59)

Appendix

Proof of independent increments
Assuming that 0 < t; < -+ <t, < T, % = 0 and that A;, 4,, -+, A, are Borel sets in R,

Pr(X(tl) € AI)X(tz)_X(tl) € A2; '":X(tn)_X(tn-—l) € An;h)

th (t.)

=E[I(X(t1) € AlJX(t2)—X(tl) € A2: ;X(tn)—X(tn—l) € An)—m

n eh{X(t,')_X(ti—l)}
= E[[1(x(¢) - x(t_,) € Ai)E[eh({X(t.-)—X(t.--l)}] )

i=1

n X)) — X(t:-1)}
= ]___[E[I(X(ti) -X(t-,) € Ai)E[eh{X(ti)—X(ti—l)}] ]
i=1

= TIBUx ()~ X(i_y) € Ash]

= [IPr(x() - X(ti_y) € Agh). A

Proof of stationary increments
Fort>0,s>0 and t+s < T,

hX(t+3)
z s)— X)) = o ) -Xe)} £ __
Elex1Xt+9) X6} p) = Eler{Xt+ )= X)) E[th(H-s)]

eh{X(t+s)— X(s)}
E[eh{X(t+s) —X(s)}]

— E[ez{X(t+s) —X(s)}
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th(t) ]
E[th(t)]
= E[e*X®):n]. (A.2)

— Ev[er(t)

Proof of (2.12) and (2.13)
Let Z; and 4 follow the standard normal distribution independently. Then the random

vectors (—pZ + V1 —p*2,2) and (pZ — V1 — p*2, 2)will have standard bivariate normal

distributions with correlation coefficients —p and — /1 —pz, respectively. Thus the left-hand
side of (2.12) is

Pr(—p4+V1-p2<a,2 <b)+Pr(pZ4—J1-pZ<—a, < c)

The two events on the right-hand side of (A.3) are disjoint. Hence the two assumptions of
(2.12) imply that the union of the two events becomes {Z <b% <c}. Thus, applying the
independence of 4 and %, the right-hand side of (A.3) is
Pr(Z<bZ<c)=P(Z <b)Pr (2 <c)=3b)d(c).
Now, let us prove (2.13). Applying ¢(—b) =1-&(b), (2.12) and (2.11),
Py (a,b;~p) + 8 (=b)®(c) = P2(a,b;—p) —D(b)(c) + & (c)
=—&,(—a,6V1—p?) + 9 (c)
= &,(a,c;/1 —p2). (A4)
Proof of (3.5)

It follows from (D21) and (D29) of Huang and Shiu (2001) that for a nonzero real number
cc+é&#0and k=0,

E[eM0(M(0,t) > k)]

1
_ 2c+ cut + 5ot —k+ (4 co®)t £ (e+&)kg(—k—ut (A5)
= c+§6 ¢( 0_‘/2 + +£e ¢( o_\/z )’ :

where ¢ denotes 2u/6°. For the expectation in (3.3), let us derive a generalization of the
expectation formula (A.5) as follows:
EleMED (M@, T) > k)]

= BleXOE[ecMED-XOlr(p(e, T) — X (t) > k— X)) | X)), (A6)

which can be divided into two expectations,

EleX®1(k < X)) E[ee™MED =X (pm(t, T) — X() >0) | X(¢)]]

+ Ele*O (k> X () EleeMED - X0 f(pr(e, T) — X (&) > k— X)) | X(#)]]- (A7)
Because the random variables M(t, T) — X(t) and X(¢) are independent and the random
variable M(0,T—t) has the same distribution as M(¢, 7)— X(t), the first conditional

expectation in (A.7) can be calculated as
BlesMET = XOIr(p(t, T) — X(t) > 0) | X(¢)]
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= Ele!MED- Xl r(ag(t, T) — X (¢) > 0)]
= EleMOT-1(pm(0, T—t) > 0)], (A.8)

which becomes

2ot WT-OHRTD L (uy o) (T-t) ) w(7-1)
et t sleter )Tt £+c s a9

according to formula (A5) with ¢t = T t and k = 0. Thus the first term in (A7) is
E[e*® 1k < X(1))(4.9)]
= E[eXOVE[I(k < X(t));c](A4.9)

B 2c+§ec'*T+%C’°’¢(—k+(u+caz)t )Q((u+aca22§T—t) )

T c+¢ ot vI-t
cut+—202t —k+(u+ca2)t _ M(T_:Q_
" c+§§ &( v )@ ( = ). (A.10)

Consider the second term in (A.7). It follows from formula (A5) with k=k— X(¢)and
t = T—t that the second conditional expectation in (A.7) is

1 2ot
2c4§ #I-t)tgee(T-1) & crot-x0)
. &(C)+ Ewad ®(Cy), (A.11)
where C; denotes X(t)—k—:iy;—__cf)(T——t)’ and G is X(t);f/%T—t). Replacing

the second conditional expectation in (A 7) with (A.11), we have the second term in (A.7),

Zet £ 0TI gy x(0)(G)

+ —c—f_?e(”f)’“E[e‘fX“)I(k > X())8(G,)]. (A.12)

By applying formula (2.17) to the two expectations in (A.12), (A.12) becomes

2c+§ecuT+lczozT (k= (uteo®)t —k+(u+c02)T [t L)
c+¢§ 0\/5 ’

£ e+
+ c+£ 5k¢ ( 0,\/' — 0.\/7" \/7) (A.13)

Therefore, adding (A.13) to (A.10) and applying formula (2.13) to the sum of the first terms
from (A.13) and (A.10), we obtain (3.5).
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