Abstract
This paper focuses on the formulation and validation of an automatic strategy to select the optimal location and direction of strain gauges for the measurement of the modal response. These locations and directions are important to render the strain measurements as robust as possible when a random mispositioning of the gauges and gauge failures are expected. The approach relies on the evaluation of the signal-to-noise ratios of the gauge measurements from strain data of finite element. The multi-step optimization strategy including genetic algorithm is used to find the strain gauge locations-directions that maximize the smallest modal strain signal-to-noise ratio in the absence of gauge failure or its expected value when gauge failure is possible. A flat Plate is used to prove the applicability of the proposed methodology and to demonstrate the effects of the essential parameters of the problem such as the mispositioning level, the probability of gauge failure, and the number of gauges.