DOI QR코드

DOI QR Code

Internal Wave Computations based on a Discontinuity in Dynamic Pressure

동압 계수의 불연속성을 이용한 내면파의 수치해석

  • Published : 2004.08.01

Abstract

Internal waves are computed using a ghost fluid method on an unstructured grid. Discontinuities in density and dynamic pressure are captured in one cell without smearing or oscillations along a multimaterial interface. A time-accurate incompressible Navier-Stokes/Euler solver is developed based on a three-point backward difference formula for the physical time marching. Artificial compressibility is introduced with respect to pseudotime and an implicit method is used for the pseudotime iteration. To track evolution of an interface, a level set function is coupled with the governing equations. Roe's flux difference splitting method is used to calculate numerical fluxes of the coupled equations. To get higher order accuracy, dependent variables are reconstructed based on gradients which are calculated using Gauss theorem. For each edge crossing an interface, dynamic pressure is assigned for a ghost node to enforce the continuity of total pressure along the interface. Solitary internal waves are computed and the results are compared with other computational and experimental results.

Keywords

References

  1. 강효길, 김문찬, 전호환, 2004, "셀중심법에 의한 축대칭 극소 로봇의 압축팽창운동에 대한 수치적인 연구" , 대한조선학회 논문집, 제 41 권, 제 2 호, pp.90-97. https://doi.org/10.3744/SNAK.2004.41.2.090
  2. 김문찬, 하동대, 2002, "비정규 격자를 이용한 극소 로봇의 추진 해석," 대한조선학회 논문집, 제 39 권, 제 3 호, pp.1-7. https://doi.org/10.3744/SNAK.2002.39.3.001
  3. 박일룡, 김진, 반석호, 2004, "Level-Set 법을 이용한 일반상선의 저항성능 해석", 대한조선학회 논문집, 제 41 권, 제 2 호, pp. 79-89. https://doi.org/10.3744/SNAK.2004.41.2.079
  4. 박일룡, 전호환, 2002, "자유표면을 가지는 점성 유동장내의 기포거동에 관한 기초해석", 대한조선학회 논문집, 제 39 권, 제 1 호, pp.16-27. https://doi.org/10.3744/SNAK.2002.39.1.016
  5. 박일룡, 전호환, 1999a, "유한체적법에 의한 자 유수면 유동해석에서 Level-Set 기법에 대한 연구", 대한조선학회 논문집, 제 36 권, 제 2 호, pp. 40-48.
  6. 박일룡, 전호환, 1999b, "접수와 이수 문제에서의 강체주위 유동해석", 대한조선학회 논문집, 제 36 권, 제 4 호, pp. 37-47.
  7. Churchill, S.W., 1988, Viscous Flows-The Practical Use of Theory, Butterworth, Massachusetts.
  8. Dalton, C., Xu, Y. and Owen, J.C., 2001, "The Suppression of Lift on a Circular Cylinder Due to Vortex Shedding at Moderate Reynolds Numbers," J. Fluids and Structures, Vol. 15, pp. 617-628. https://doi.org/10.1006/jfls.2000.0361
  9. Farrant, T. Tan, M. and Price, W.G., 2000, "A cell boundary element method applied to laminar vortex-shedding from arrays of cylinders in various arrangements," J. of Fluids and Structures, Vol. 14, pp. 375-402. https://doi.org/10.1006/jfls.1999.0275
  10. Fedkiw, R.P., Aslam, T., Merriman, B. and Osher, S., 1999, "A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)," J. of Computational Physics, Vol. 152, pp. 457-492. https://doi.org/10.1006/jcph.1999.6236
  11. Grue, J., Friis, H.A., Palm, E. and Rusas, P.O., 1997, "A method for computing unsteady fully nonlinear interface waves," J. of Fluid Mechanics, Vol. 351, pp. 223-252. https://doi.org/10.1017/S0022112097007428
  12. Kiris, C. and Kwak, D.C., 2001, "Numerical solution of incompressible Navier-Stokes equations using a fractional-step approach," Computers & Fluids, Vol. 30, pp. 829-851. https://doi.org/10.1016/S0045-7930(01)00031-7
  13. Kovasznay, L.S.G., 1949, "Hot-wire investigation of the wake behind cylinders at low Reynolds numbers," Proc. Of the Royal Society, Vol. 198, pp. 174-190. https://doi.org/10.1098/rspa.1949.0093
  14. Melville, W.K. and Helfrich, K.R., 1987, "Transcritical two-layer flow over topography" J. of Fluid Mechanics, Vol. 178, pp. 31-52. https://doi.org/10.1017/S0022112087001101
  15. Mittal, S. and Raghuvanshi, A., 2001, "Control of vortex shedding behind circular cylinder for flows at low Reynolds numbers," Int. J. for Numerical Methods in Fluids, Vol. 35, pp. 421-447. https://doi.org/10.1002/1097-0363(20010228)35:4<421::AID-FLD100>3.0.CO;2-M
  16. Shin, S. and Kim, C.K., 2004, "Numerical simulation on streaklines of traveling vortices using a transport equation on an unstructured grid," (submitted to Computers & Fluids).
  17. Shin, S., Kim, C.K. and Bai, K.J., 2004, "Numerical simulation on an interaction of a vortex street with an elliptical leading edge using an unstructured grid," Int. J. for Numerical Methods in Fluids, Vol. 44, pp. 331-346. https://doi.org/10.1002/fld.643
  18. Slaouti, A. and Stansby, P.K., 1992, "Flow around two circular cylinders by the random vortex method," J. of Fluids and Structures, Vol. 6, pp. 641-670. https://doi.org/10.1016/0889-9746(92)90001-J
  19. Wille, R., 1960, "Karman vortex streets," Advances in Applied Mechanics, Vol. 6, pp. 273-281. https://doi.org/10.1016/S0065-2156(08)70113-3

Cited by

  1. Numerical Analysis of Viscous Flows on Unstructured Grids Using the Optimal Method of Strongly Implicit Procedure vol.49, pp.2, 2012, https://doi.org/10.3744/SNAK.2012.49.2.196