DOI QR코드

DOI QR Code

실리카 주형을 이용한 메크로/메조다공성 탄화규소 세라믹의 제조와 비교특성

Fabrication and Characterization of Macro/Mesoporous SiC Ceramics from SiO2 Templates

  • 홍난영 (충남대학교 신소재연구소) ;
  • ;
  • 박경훈 (충남대학교 공과대학 정밀공업화학) ;
  • 김동표 (충남대학교 공과대학 정밀공업화학과)
  • ;
  • Hao Wang (Key Lab of Ceramic Fiber and Composites, National University of Defense Technology, Chin) ;
  • ;
  • 발행 : 2004.07.01

초록

입자크기가 20∼700nm인 구형 실리카입자의 자연침강 혹은 원심분리법으로 제조한 주형체에 탄화규소 전구체 polymethyl-silane (PMS) 혹은 polycarbosilane (PCS) 고분자 용액을 함침한다음, 가교 및 1000∼140$0^{\circ}C$ 열분해하고 마지막으로 불산 (HF)으로 실리카를 식각하여 84∼658nm 기공이 3차원으로 정렬된 메크로다공성(macroporous) 탄화규소 세라믹과 불규칙적인 15∼65nm 기공을 가진 메조다공성(mesoporous) 탄화규소 세라믹을 제조하였다. 전자는 112nm 실리카 입자 주형체를 사용하여 140$0^{\circ}C$로 처리했을 때, 표면적 584.64$m^2$g$^{-1}$을 나타낸 반면, 후자는 20-30nm 실리카 주형체를 사용하여 100$0^{\circ}C$로 처리하였을때, 최대의 표면적 619.4$m^2$g$^{-1}$를 나타내었다, 이와 같이 사용된 실리카 입자, 고분자 전구체, 그리고 열처리 조건에 따른 기공특성을 SEM. TEM 및 BET으로 분석 설명하였다.

Macroporous SiC with pore size 84∼658 nm and mesoporous SiC with pore size 15∼65 nm were respectively prepared by infiltrating low viscosity preceramic polymer solutions into the various sacrificial templates obtained by natural sedimentation or centrifuge of 20∼700 nm silica sol, which were subsequently etched off with HF after pyrolysis at 1000∼140$0^{\circ}C$ in an argon atmosphere. Three-dimensionally long range ordered macroporous SiC ceramics derived from polymethylsilane (PMS) showed surface area 584.64$m^2$g$^{-1}$ when prepared with 112nm silica sol and at 140$0^{\circ}C$, whereas mesoporous SiC from polycarbosilane (PCS) exhibited the highest surface area 619.4 $m^2$g$^{-1}$ with random pore array when prepared with 20-30 nm silica sol and at 100$0^{\circ}C$. Finally, tile pore characteristics of porous SiC on the types of silica sol, polymers and pyrolytic conditions were interpreted with the analytical results of SEM, TEM, and BET instruments.

키워드

참고문헌

  1. Nature v.389 Porous Silica via Colloidal Crystallization O. D. Velev;T. A. Jede;R. F. Lobo;A. M. Lenhoff
  2. Carbon v.39 Reproducible Production of Nanoporous Carbon Membranes J. S. Yu;S. B. Yoon;G. S. Chai https://doi.org/10.1016/S0008-6223(01)00024-0
  3. Chem. Mater. v.12 General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion H. Yan;C. F. Blanford;B. T. Holland;W. H. Smyrl;A. Stein https://doi.org/10.1021/cm9907763
  4. J. Mater. Chem. v.11 no.3 Electrochemical Syntheses of Highly Ordered Macroporous Conducting Polymers Grown Around Self-Assembled Colloidal Templates P. N. Bartlett;P. R. Birkin;M. A. Ghanem;C. S. Toh https://doi.org/10.1039/b006992m
  5. Nature v.414 Self-Assembly Lights Up J. D. Joannopoulos https://doi.org/10.1038/35104718
  6. Adv. Mater. v.13 Titanium Dioxide Tubes from Sol-Gel Coating of Electrospun Polymer Fibers R. A. Caruso;J. H. Schattka;A. Greiner https://doi.org/10.1002/1521-4095(200110)13:20<1577::AID-ADMA1577>3.0.CO;2-S
  7. Adv. Funct. Mater. v.12 Silica Films with Bimodal Pore Structure Prepared by Using Membranes as Templates and Amphiphiles as Porogens R. A. Caruso;M. Antonietti https://doi.org/10.1002/1616-3028(20020418)12:4<307::AID-ADFM307>3.0.CO;2-9
  8. Adv. Mater. v.12 Porous Metals from Colloidal Templates K. M. Kulinowski;P. Jiang;H. Vaswani;V. L. Colvin https://doi.org/10.1002/(SICI)1521-4095(200006)12:11<833::AID-ADMA833>3.0.CO;2-X
  9. J. Microporous Mater. v.4 Carbogenic Molecular Seives : Synthesis Properties and Applications H. C. Foley https://doi.org/10.1016/0927-6513(95)00014-Z
  10. Adv. Mater. v.13 Pattening Porous Oxides within Microchannel Networks P. D. Yang;A. H. Rizvi;B. Messer;B. F. Chmelka;G. M. Whitesides;G. Stucky https://doi.org/10.1002/1521-4095(200103)13:6<427::AID-ADMA427>3.0.CO;2-C
  11. Chem. Comm. v.22 Low-Cost and Facile Synthesis of Mesocellular Carbon Foams J. Lee;K. Sohn;T. Hyeon
  12. Carbon v.41 The effect of Silica Template Structure on the Pore Structure of Mesoporous Carbons S. Han;K. T. Lee;S. M. Oh;T. Hyeon https://doi.org/10.1016/S0008-6223(02)00439-6
  13. Angew. Chem., Int. Ed. Engl. v.36 $Ba_2Nd_7Si_{11}N_{23}$ - a Nitridosilicate with a Zeolite-Analogous Si-N Structure H. Huppertz;W. Schnick https://doi.org/10.1002/anie.199202131
  14. Colloids Surf v.50 Preparation of Silica Nanoparticles in a Non-Ionic Reverse Micellar System K. O. Asare;F. J. Arriagada https://doi.org/10.1002/anie.199726511
  15. J. Mater. Sci. Lett. v.19 Polymethylsilane Post-Treated with a Polyborazine Promotors as a Precursor to SiC with High Ceramic Yield D. P. Kim https://doi.org/10.1016/0166-6622(90)80273-7
  16. Chem. Mater. v.11 Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks B. J. Melde;B. T. Holland;C. F. Blanford;A. Stein https://doi.org/10.1023/A:1006754428380
  17. Adv. Mater. v.13 Ordered Mesoporous Carbons R. Ryoo;S. H. Joo;M. Kruk;M. Jaroniec https://doi.org/10.1021/cm9903935
  18. J. Am. Ceram. Soc. v.84 Micro-/Macroporous Ceramics from Preceramic Precursors H. Schmidt;D. Koch;G. Grathwohl https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
  19. J. Phys. Chem. B. v.104 Block-Copolymer-Templated Ordered Mesoporous Silica : Array of Uniform Mesopores or Mesopore-Micropore Network? R. Ryoo;C. H. Ko;M. Kruk;V. Antochshuk;M. Jaroniec https://doi.org/10.1111/j.1151-2916.2001.tb00997.x
  20. Thin Solid Films. v.389 Boron-Rich Boron Nitride (BN) Films Prepared by a Single Spin-Coating Process of a Polymeric Precursor J. G. Kho;K. T. Moon;G. Nouet;P. Ruterana;D. P. Kim https://doi.org/10.1021/jp002597a
  21. J. Mater. Chem. v.12 no.4 Preparation of Hybrid Polymer as a Near-Stoichiometric SiC Precursor by Blending of Polycarbosilane and Polymethysilane F. Cao;D. P. Kim;X. D. Li https://doi.org/10.1016/S0040-6090(01)00760-X
  22. Chem. Commun. v.14 Fabrication of Macroporous SiC from Templated Preceramic Polymers I. K. Sung;S. B. Yoon;J. S. Yu;D. P. Kim https://doi.org/10.1039/b106994m
  23. Angew. Chem., Int. Ed. Engl. v.31 W. Schnick;J. Lucke https://doi.org/10.1002/anie.199202131