Study of Acoustic Streaming at Resonance by Longitudinal Ultrasonic Vibration Using Particle Imaging Velocimetry

입자 영상 유속계를 이용한 초음파 수직진동에 의해 유도된 공진상태에서의 음향유동에 관한 연구

  • 노병국 (한성대학교 기계시스템공학과) ;
  • 이동렬 (대구가톨릭대학교 기계자동차공학부)
  • Published : 2004.07.01

Abstract

Acoustic streaming induced by the microscopic longitudinal ultrasonic vibration at 28.5 ㎑ is visualized between the quiescent glass plate and ultrasonic vibrator by particle imaging velocimetry(PIV) using laser. To investigate the augmentation of air flow velocity of acoustic streaming. the velocity variations of air streaming between the stationary plate and ultrasonic vibrator are measured in real-time. It is experimentally investigated that the magnitude of the acoustic streaming dependent upon the gap between the ultrasonic vibrator and stationary p1ate results in the variations of the average velocity fields as a outcome of the bulk air flow caused by the ultrasonic vibration. In addition. maximum acoustic streaming velocity exists at resonant gap. 18mm that is one of the resonant gaps (H=18, 24, 30, 36㎜) at which resonance occurs. The variation of the local maximum turbulent intensity with axial direction appear to reveal the value of 8%∼70% dependent upon the gap between the quiescent glass plate and ultrasonic vibrator. Shearstress is also maximized at the center region of the vibrator and the vorticity is also maximum and minimum in the neighborhood of the center of the vibrator at which the local maximum turbulent intensity and shear stress exist.

28.5 ㎑의 초음파의 미세 수직진동에 의해서 유도된 음향유동 (acoustic streaming)을 레이저를 이용한 입자 영상. 유속계에 의하여 고정 유리 평판과 초음파 진동자의 사이에서의 공기 유동을 가시화 하였다. 음향유동에 의한 공기의 유동 속도의 증가를 측정하기 위해 고정 유리 평판과 초음파 진동자의 사이에서의 속도변화를 실시간으로 측정하였다. 진동자와 고정 평판의 사이의 gap에 따른 음향유동의 세기의 변화를 정량적인 공기의 유동 속도의 변화에 의해 관찰되었고 고정판과 초음파 진동자 사이의 gap에서 공진 상태를 야기시키는 공진 Gap (H=18, 24, 30, 36㎜)중에서 공진 Gap (H)이 18m일 때 최대의 음향속도가 존재함을 알 수 있었고 진동자 표면부근에서부터 고정평판사이까지의 국소 최대 난류강도의 축 방향 위치에 따른 변화는 gap의 크기에 따라 8%∼70% 이었다. 전단응력값은 반경방향 위치의 중심영역에서 최대전단응력을 가지며 와도 분포도 반경방향 위치에서 진동자 중심영역에 최대 및 최소와도 값을 가짐을 알 수 있었다.

Keywords

References

  1. Phil. Trans. v.121 M. Faraday
  2. Theory of Sound L. Rayleigh
  3. Boundary Layer Theory Schlicting, H.
  4. J. of Acoust. Soc. Am. v.30 no.4 acoustic streaming near a Boundary W. L. Nyborg https://doi.org/10.1121/1.1909587
  5. J. of Sound and Vib. v.61 no.3 acoustic streaming J. Lighthill https://doi.org/10.1016/0022-460X(78)90388-7
  6. J. of Acoust. Soc. Am. v.32 no.11 Sonically-Induced Microstreaming near a Plane Boundary. II. Acoustic Streaming Field F. J. Jackson;W. L. Nyborg https://doi.org/10.1121/1.1907915
  7. Journal of Heat Transfer v.116 Convective Heat Transfer Due to acoustic streaming across the Ends of Kundt Tube A. Gopinath;F. Mills https://doi.org/10.1115/1.2910882
  8. Int. J. Heat & Mass Transfer v.38 no.10 Acoustic enhancement of heat transfer between two parallel plates P. Vainshtein;M. Fichman;C. Cutfinger https://doi.org/10.1016/0017-9310(94)00299-B
  9. Multiphase-Flow and Heat Transfer in Materials Processing ASME v.FED201;HTD297 Heat Transfer to Cylindrical Bodies and Small Particles in an Ultrasonic Standing-Wave Fields of Melt Atomizer V. Uhlenwinkel;R. Meng;K. Bauckhage;P. Schreckenber;O. Andersen
  10. IEEE Industrial electronics v.48 no.1 Feasibility of using Ultrasonic Flexural Waves as a Cooling Mechanism P. I. Ro;B. Loh
  11. Journal of Acoustical Society of America v.111 no.2 acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer B. _oh;S. Hyun;P. Ro;C. Kleinstreuer https://doi.org/10.1121/1.1433811
  12. Fundamentals of Temeperature Pressure and Flow measurements(2nd. ed.) Benedict, R.P.
  13. Flow Measurement Engineering Handbook(2nd ed.) R.W. Miller
  14. Flow visualization(2nd ed.) W. Merzkirch
  15. Handbook of Flow Visualization W.J. Yang
  16. Ann. Rev. Fluid Mech. Paticle-imaging technique for experimental fluid mechanics R.J. Adrian
  17. Experimental Thermo-Fluid Mechanics AFERC S.J. Lee
  18. Fluid Mechanics Measurements R.J. Goldstein
  19. 3-D Velocity & Vorticity Measuring & Image Analysis Techniques Th. Dracos
  20. Ann. Rev. Fluid Mech. Digital image processing in flow visualization I. Hessenlink
  21. PIV (Paticle Image Valocimetry) Velocity Field Measurement S.J. Lee
  22. J. of Acoust. Soc. Am. v.25 no.5 acoustic streaming at High Reynolds Numbers J. M. Andres;U. Ingard https://doi.org/10.1121/1.1907220
  23. Nonlinear Acoustics M. F. Hemilton;D. T. Blockstock