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Non Leaky Conductor-Backed CPW Based on Thin Film Polyimide on
CMOS-grade Silicon for Ku-band Application

Sang-No Lee*, Joon-Ik Lee**, Jong-Gwan Yook* and Yong-Jun Kim**

Abstract - This paper reports a miniaturized conductor-backed CPW (CBCPW) bandpass filter based
on a thin film polyimide layer coated on CMOS-grade silicon. With a 20 pm-thick polyimide interface
layer and back metallization on the CMOS-grade silicon, the interaction of electromagnetic fields with
the lossy silicon substrate has been isolated, and as a result a low-loss and low-dispersive CBCPW line
has been obtained. Measured attenuation constant at 20 GHz is below 1.2 dB/cm, which is compatible
with the CPW on GaAs. In addition, by using the proposed CBCPW geometry, miniaturized BPF for
Ku band application is designed and its measured frequency response shows excellent agreement with
the predicted value with validating the performances of the proposed CBCPW geometry for RFIC

interconnects and filter applications.

Keywords: Band Pass Filter (BPF), CMOS-grade silicon, Conductor-backed CPW (CBCPW),
Radio Frequency Integrated Circuits (RFICs), Thin film polyimide.

1. Introduction

Radio frequency integrated circuits (RFICs) technology
based on the CMOS-grade silicon substrate for recent
microwave and RF mobile communication systems possess
appeal due to its low-cost and relatively simple fabrication
process. However, the substrate loss in the lossy silicon (1
to 30 &-cm) poses problems when the lossy silicon is used
as a microwave passive component. To overcome substrate
loss due to low resistivity, the elevated thin film microstrip
(TFMS) line based on the polyimide layer of CMOS-grade
silicon has been used to provide compatibility with
monolithic microwave integrated circuits (MMICs)
processing and is useful for low-loss miniaturized circuits
[1]. However, an additional process should be applied to
form the passageway openings for on-wafer probing by
etching the thin film. Also, low-loss CPW on low-
resistivity silicon with a micromachined polyimide
interface layer has been used for radio frequency integrated
circuit interconnects [2]. However, the attenuation of the
line on CMOS-grade silicon is very sensitive to the
polyimide thickness, the strip, and the slot width.

In this paper, to overcome the limited performances of
CPW on CMOS-grade silicon, the interaction of
electromagnetic fields with the silicon substrate has been
isolated by placing a conducting ground plane under the
polyimide layer. This conductor-backed structure provides

* Dept. of Electrical and Electronic Engineering, Younsei University, 134
Seodaemoon-Gu,  Shinchon-Dong, Seoul, 120-749, Korea.
(snlee @yonsei.ac.kr , jgyook @yonsei.ac.kr )

## Dept. of Mechanical Engineering, Yonsei University, Korea.
( leejoonik@yonsei.ac.kr , yjk@yonsei.ac.kr )

Received May 13, 2004 : Accepted July 20, 2004

mechanical strength for a thin fragile wafer and can also be
used as a heat sink for active devices and circuits [3].
Moreover, just one mask layout is required to fabricate the
proposed CBCPW, thus making it a cost effective structure
as well as compatible with the CMOS process. The
parasitic leakage effects in CBCPW geometry, which is a
troublesome issue in MMIC packages [4], is quite
negligible up to 50 GHz owing to the smaller effective
lateral dimensions and lower effective dielectric constant,
which means the minimum resonant frequency of CBCPW
based on a simple rectangular patch theorem [5, 6] shifts to
higher frequency regime. After thoroughly investigating
the proposed CBCPW characteristics on attenuation
constant, effective dielectric constant and leaky resonant
frequency, a miniaturized BPF geometry is designed and its
measured frequency response is compared well with the
simulated data. Moreover, the lumped element equivalent
circuit model of the designed BPF including lossy
components as well as inductive and capacitive
components is also introduced and shows a good
agreement with the measured data compared to the
equivalent circuit [7], which only modeled the inductive
and capacitive elements and therefore was not in
accordance with the measured data. In addition, an on-
wafer TRL calibration procedure is performed to obtain
appropriate effective dielectric constant as well as
attenuation constant, which are both necessary for accurate
BPF design.
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2. Design and Modeling

. Fig. 1 shows the geometry of the proposed CBCPW on
CMOS-grade silicon. This structure is more robust and
simpler to fabricate than membrane-supported CPW lines
on COMS-grade silicon [8, 9].
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Fig. 1 Schematic of the proposed CBCPW with thin film
polyimide on CMOS-grade silicon. (G = 2.0 mm,
W=S8=50pum, L=50mm,T= 10 pm, Hp = 20
pm, Hs = 500 pm) (a) side view (b) top view.

This geometry does not support the leaky parallel plate
mode up to 50 GHz by directly calculating the resonance
frequency of the equation (1),

ARG

where ¢ is the velocity of light, €, is the relative

permittivity, and G and L are the width and the length of
the ground patch, respectively. By utilizing the de-
embedded effective permittivity into the above equation,

the calculated lowest order mode resonance frequency f,

of 50.1 GHz is obtained, which agrees well with the
simulated result of 51.1 GHz. Since the relative
permittivity of the polyimide at 100 MHz is utilized, a
slight difference of resonance frequency is observed. With
the proposed CBCPW geometry it is possible to provide
very low effective dielectric constants, thus low-dispersion
transmission line for high-speed circuits is possible. To

maintain 50 Q characteristic impedance for feed lines,
polyimide thickness of H, is fixed as 20 pum. Also
considering on-wafer measurement with 200 um pitch G-
S-G probe, 55 Q structure with W = S = 50 um is selected
to minimize reflection loss between the CBCPW and probe
structure. The optimized condition of (W + 28) / H, < 3 for
minimum attenuation constant and dispersion loss [2] is
not an issue in the CBCPW geometry because of the back
metallization, thus making the flexible design rule possible
in RF integrated circuits. Based on the CBCPW line a
miniaturized bandpass filter for Ku-band application is
designed with two A,/4 bended stubs inside the signal line
and parallel stubs within the ground planes, where A,
represents guided wavelength at center frequency.
Basically, bended stubs are chosen for a sharper cutoff and
narrower bandwidth due to the associated parasitic
capacitive and inductive effects, which also slightly change
the total length of bended stub structure when compared
with the straight A,/4 stub [10].

A schematic view of designed BPF with 4.15 x 3.52
mm® size is shown in Fig. 2 with the following
dimensions : L; = 0.5 mm, S =W =W, =0.05 mm, L, =
0.4925 mm, L; = Ls = 0.2925 mm, L, =0.25 mm, W, =
0.15 mm, G, = 0.865 mm, G, = 1.075 mm, G; = 0.2 mm,
and G = 2.0 mm. In this figure, black and white areas
represent the plated conductors and deposited polyimide,
respectively. The lumped element equivalent circuit model
of the designed BPF including lossy components as well as
inductive and capacitive components is also introduced in
Fig. 3.
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Fig. 2 Shematic-view of proposed CBCPW BPF.
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Fig. 3 Equivalent circuit of proposed CBCPW BPF (L, =
022 nH, R, = 1.7 Q, C,, = 042 pF, Ry, = 0.55 Q,
L,=04nH,R;;=10Q,L,=04nH,R;,; =02 Q,
C,=025pF R;;=1.0Q,L.=0.7nH,R. =03 Q).

Note that the parallel components L, and C, within the
ground planes make resonant circuits. The Ly, and C,
combination introduces the upper band attenuation pole of
the BPF, while the series elements of L, and C,, within the
signal line contribute to the lower side attenuation pole. By
varying the inductive stub length / having inductance value
L. in the equivalent circuit, the amount of coupling
between resonators can be adjusted. In this paper, the
inductive stub length is chosen as 1.625 mm for optimum
response of the filter.

3. Experimental Results

For the fabrication of the proposed miniaturized BPF on
the CBCPW structure, 5000 A Si0; is deposited first on
top of the silicon substrate, and then 200 A Cr and 1 um
Cu layers are thermally evaporated as an underside ground
plane. For improved adhesion of polyimide promoter
(VM©652) is applied on the metal layer and a 20 pm thick
polyimide layer (Dupont PI-2611) of ¢, = 3.1 and tan & =
0.003 is spin-coated and cured at 350°C for one hour. To
form CBCPW line and BPF, positive PR (AZ 4620) is used
as an electroplating mold and sacrificial layer. Finally, the
sacrificial layer is removed by wet etching technique and
dried in an 80°C convection oven.

For on-wafer measurement, TRL de-embedding procedure

using Multical [11] software is performed by employing a
vector network analyzer with G-S-G high frequency
coplanar probes having a 200 pm pitch. Each calibration
standards consists of a thru line of 200 pm long, two delay
lines of 5200 wm and 12000 pum long, and a reflect
standard with an open circuited CBCPW line.

Measured attenuation constant and effective permittivity
of the designed CBCPW with G = 2.0 mm, W = S = 50 pm,
L = 5.0 mm geometry are shown in Fig. 4. The measured
attenuation constant at 20 GHz is below 1.2 dB/cm, which
is compatible with the CPW on GaAs, while the de-
embedded effective dielectric constant versus frequency is
below the dielectric constant of the thin film, which
validates the very low-dispersive characteristic of the
proposed CBCPW transmission line.
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Fig. 4 Measured characteristics of the CBCPW.

Fig. 5 shows a measured frequency response of the
designed CBCPW BPF as well as simulated data based on
IE3D and modeled data derived from Fig. 3, which reveals
excellent agreement with the predicted value having center
frequency of 15.92 GHz, insertion loss of 2.4 dB and
bandwidth of 23%.
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Fig. 5 Measured frequency response of the fabricated BPF.
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4. Conclusion

In this paper, a miniaturized conductor-backed CPW
bandpass filter based on thin film polyimide layer coated
on CMOS-grade silicon is described. Proposed geometry
effectively isolates the interaction of electromagnetic fields
with the lossy silicon substrate by using a thin film
polyimide interface layer and back metallization. By de-
embedding the CBCPW using TRL calibration standards,
low-dispersive property is demonstrated. Also, measured
attenuation constant up to 20 GHz is below 1.2 dB/cm,
which is compatible with the CPW on GaAs. Measured
frequency response of the designed CBCPW BPF using
bended stubs for miniaturization has excellent agreement
with the simulated data having center frequency of 15.92
GHz, insertion loss of 2.4 dB and bandwidth of 23%.
Proposed CBCPW geometry using CMOS-grade silicon
and thin film polyimide can be applied for RFIC
interconnects and filter application without exciting leaky
waves up to 50 GHz.
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