참고문헌
- W. Pedrycz, J.F. Peters, Computational Intelligence and Software Engineering, World Scientific, Singapore, 1998
- L. W. Chan and F. Fallside, 'An Adaptive Training Algorithm for Back Propagation Networks', Computer Speech and Language, Vol. 2, pp.205-218, 1987 https://doi.org/10.1016/0885-2308(87)90009-X
- C. M. Bishop, Neural Networks for Pattern Recognition, Oxford Univ. Press, 1995
- S. K. Oh and W. Pedrycz, 'Fuzzy Idnetification by Means of Auto-Tuning Algorithm and Its Application to Nonlinear Systems', Fuzzy Sets and Systems, Vol. 115, No. 2, pp.205-230, 2000 https://doi.org/10.1016/S0165-0114(98)00174-2
- B. J. Park, W. Pedrycz and S. K. Oh, 'Identification of Fuzzy Models with the Aid of Evolutionary Data Granulation', IEE Proceedings-Control theory and application, Vol. 148, Issue 5,pp. 406-418, 2001 https://doi.org/10.1049/ip-cta:20010677
- S. K. Oh, W. Pedrycz and B. J. Park, 'Hybrid Identification of Fuzzy Rule-Based Models', Inter. Journal of Intelligent Systems, Vol. 17, Issue 1, pp.77-103, 2002 https://doi.org/10.1002/int.1004
- David E. Goldberg, Genetic Algorithms in search, Optimization&Machine Learning, Addison-wesley, 1989
- Z. Michalewicz, Genetic Algorithms + Data Structure = Evolution Programs, Springer- Verlag, 1992
- W. Pedrycz and G. Vukovich, 'Granular Neural Networks', Neurocomputing, Vol. 36, pp.205-224, 2001 https://doi.org/10.1016/S0925-2312(00)00342-8
- J. S. R. Jang, C. T. Sung and E. Mizutani, NeuroFuzzy and Soft Computing, Prentice Hall, 1997
- B. J. Park, W. Pedrycz and S. K. Oh, 'Fuzzy Polynomial Neural Networks: Hybrid Architectures of Fuzzy Modeling', IEEE Transaction on Fuzzy Sys., Vol. 10, Issue 5, pp.607-621, 2002 https://doi.org/10.1109/TFUZZ.2002.803495
- S. K. Oh, W. Pedrycz and B. J. Park, 'Selforganizing Neurofuzzy Networks Based on Evolutionary Fuzzy Granulation', IEEE Transaction on Systems, Man and Cybernetics- part A, Vol. 33, No. 2, pp.271-277, 2003 https://doi.org/10.1109/TSMCA.2002.806482
- T. Yamakawa, 'A New Effective Learning Algorithm for a Neo Fuzzy Neuron Model', 5th IFSA World Conference, pp.1017-1020, 1993
- S. K. Oh, W. Pedrycz and H. S. Park, 'Hybrid Identification in Fuzzy-Neural Networks', Fuzzy Sets and Systmes, Vol. 138, No. 2, pp.399-426, 2003 https://doi.org/10.1016/S0165-0114(02)00441-4
- H. S. Park and S. K. Oh, 'Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation', International Journal of Control, Automation and Systems, Vol. 1, No. 2, pp.194-202, 2003
- G. Vachtsevanos, V. Ramani and T. W. Hwang, 'Prediction of Gas Turbine NOx Emissions using Polynomial Neural Network', Technical Report, Georgia Institute of Technology, Atlanta, 1995
- D. E. Box and G. M. Jenkins, Time Series Analysis, Forcasting and Control, California: Holden Day, 1976
- E. Kim, H. Lee, M. Park and M. Park, 'A Simply Identified Sugeno-type Fuzzy Model via Double Clustering', Information Sciences, Vol 110, pp.25-39. 1998 https://doi.org/10.1016/S0020-0255(97)10083-4
- Y. Lin, G. A. Cunningham Ⅲ, 'A new Approach to Fuzzy-neural Modeling', IEEE Transaction on Fuzzy Systems, Vol. 3, No. 2, pp. 190-197, 1997 https://doi.org/10.1109/91.388173
- 오성권, 프로그래밍에 의한 컴퓨터지능(퍼지, 신경회로망 및 진화알고리즘을 중심으로), 내하출판사, 2002
- 진강규, 유전알고리즘과 그 응용, 교우사, 2000
- 박호성, 오성권, 'HCM 클러스터링에 의한 다중 퍼지뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화', 한국 퍼지 및 지능 시스템 학회 논문지, 10권, 5호, pp.487-496, 2000
- 박병준, 오성권, 안태천, 김현기, '유전자 알고리즘과 하중값을 이용한 퍼지시스템의 최적화', 48A권, 6호, pp. 89-799, 1999
- 안태천, 오성권, '발전소의 대기오염물질 배출패턴 모델 정립', 기초전력공학 공동연구소, 1997
- 오성권, 박춘성, 박병준, '적응 퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링', 대한전기학회 논문지, 48A권, 10호, pp.1293-1302, 1999