Genetically Optimized Neurofuzzy Networks: Analysis and Design

진화론적 최적 뉴로퍼지 네트워크: 해석과 설계

  • 박병준 (원광대학 전기전자ㆍ정보공학부) ;
  • 김현기 (수원대학 전기공학) ;
  • 오성권 (원광대학 전기전자ㆍ정보공학부)
  • Published : 2004.08.01

Abstract

In this paper, new architectures and comprehensive design methodologies of Genetic Algorithms(GAs) based Genetically optimized Neurofuzzy Networks(GoNFN) are introduced, and a series of numeric experiments are carried out. The proposed GoNFN is based on the rule-based Neurofuzzy Networks(NFN) with the extended structure of the premise and the consequence parts of fuzzy rules being formed within the networks. The premise part of the fuzzy rules are designed by using space partitioning in terms of fuzzy sets defined in individual variables. In the consequence part of the fuzzy rules, three different forms of the regression polynomials such as constant, linear and quadratic are taken into consideration. The structure and parameters of the proposed GoNFN are optimized by GAs. GAs being a global optimization technique determines optimal parameters in a vast search space. But it cannot effectively avoid a large amount of time-consuming iteration because GAs finds optimal parameters by using a given space. To alleviate the problems, the dynamic search-based GAs is introduced to lead to rapidly optimal convergence over a limited region or a boundary condition. In a nutshell, the objective of this study is to develop a general design methodology o GAs-based GoNFN modeling, come up a logic-based structure of such model and propose a comprehensive evolutionary development environment in which the optimization of the model can be efficiently carried out both at the structural as well as parametric level for overall optimization by utilizing the separate or consecutive tuning technology. To evaluate the performance of the proposed GoNFN, the models are experimented with the use of several representative numerical examples.

Keywords

References

  1. W. Pedrycz, J.F. Peters, Computational Intelligence and Software Engineering, World Scientific, Singapore, 1998
  2. L. W. Chan and F. Fallside, 'An Adaptive Training Algorithm for Back Propagation Networks', Computer Speech and Language, Vol. 2, pp.205-218, 1987 https://doi.org/10.1016/0885-2308(87)90009-X
  3. C. M. Bishop, Neural Networks for Pattern Recognition, Oxford Univ. Press, 1995
  4. S. K. Oh and W. Pedrycz, 'Fuzzy Idnetification by Means of Auto-Tuning Algorithm and Its Application to Nonlinear Systems', Fuzzy Sets and Systems, Vol. 115, No. 2, pp.205-230, 2000 https://doi.org/10.1016/S0165-0114(98)00174-2
  5. B. J. Park, W. Pedrycz and S. K. Oh, 'Identification of Fuzzy Models with the Aid of Evolutionary Data Granulation', IEE Proceedings-Control theory and application, Vol. 148, Issue 5,pp. 406-418, 2001 https://doi.org/10.1049/ip-cta:20010677
  6. S. K. Oh, W. Pedrycz and B. J. Park, 'Hybrid Identification of Fuzzy Rule-Based Models', Inter. Journal of Intelligent Systems, Vol. 17, Issue 1, pp.77-103, 2002 https://doi.org/10.1002/int.1004
  7. David E. Goldberg, Genetic Algorithms in search, Optimization&Machine Learning, Addison-wesley, 1989
  8. Z. Michalewicz, Genetic Algorithms + Data Structure = Evolution Programs, Springer- Verlag, 1992
  9. W. Pedrycz and G. Vukovich, 'Granular Neural Networks', Neurocomputing, Vol. 36, pp.205-224, 2001 https://doi.org/10.1016/S0925-2312(00)00342-8
  10. J. S. R. Jang, C. T. Sung and E. Mizutani, NeuroFuzzy and Soft Computing, Prentice Hall, 1997
  11. B. J. Park, W. Pedrycz and S. K. Oh, 'Fuzzy Polynomial Neural Networks: Hybrid Architectures of Fuzzy Modeling', IEEE Transaction on Fuzzy Sys., Vol. 10, Issue 5, pp.607-621, 2002 https://doi.org/10.1109/TFUZZ.2002.803495
  12. S. K. Oh, W. Pedrycz and B. J. Park, 'Selforganizing Neurofuzzy Networks Based on Evolutionary Fuzzy Granulation', IEEE Transaction on Systems, Man and Cybernetics- part A, Vol. 33, No. 2, pp.271-277, 2003 https://doi.org/10.1109/TSMCA.2002.806482
  13. T. Yamakawa, 'A New Effective Learning Algorithm for a Neo Fuzzy Neuron Model', 5th IFSA World Conference, pp.1017-1020, 1993
  14. S. K. Oh, W. Pedrycz and H. S. Park, 'Hybrid Identification in Fuzzy-Neural Networks', Fuzzy Sets and Systmes, Vol. 138, No. 2, pp.399-426, 2003 https://doi.org/10.1016/S0165-0114(02)00441-4
  15. H. S. Park and S. K. Oh, 'Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation', International Journal of Control, Automation and Systems, Vol. 1, No. 2, pp.194-202, 2003
  16. G. Vachtsevanos, V. Ramani and T. W. Hwang, 'Prediction of Gas Turbine NOx Emissions using Polynomial Neural Network', Technical Report, Georgia Institute of Technology, Atlanta, 1995
  17. D. E. Box and G. M. Jenkins, Time Series Analysis, Forcasting and Control, California: Holden Day, 1976
  18. E. Kim, H. Lee, M. Park and M. Park, 'A Simply Identified Sugeno-type Fuzzy Model via Double Clustering', Information Sciences, Vol 110, pp.25-39. 1998 https://doi.org/10.1016/S0020-0255(97)10083-4
  19. Y. Lin, G. A. Cunningham Ⅲ, 'A new Approach to Fuzzy-neural Modeling', IEEE Transaction on Fuzzy Systems, Vol. 3, No. 2, pp. 190-197, 1997 https://doi.org/10.1109/91.388173
  20. 오성권, 프로그래밍에 의한 컴퓨터지능(퍼지, 신경회로망 및 진화알고리즘을 중심으로), 내하출판사, 2002
  21. 진강규, 유전알고리즘과 그 응용, 교우사, 2000
  22. 박호성, 오성권, 'HCM 클러스터링에 의한 다중 퍼지뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화', 한국 퍼지 및 지능 시스템 학회 논문지, 10권, 5호, pp.487-496, 2000
  23. 박병준, 오성권, 안태천, 김현기, '유전자 알고리즘과 하중값을 이용한 퍼지시스템의 최적화', 48A권, 6호, pp. 89-799, 1999
  24. 안태천, 오성권, '발전소의 대기오염물질 배출패턴 모델 정립', 기초전력공학 공동연구소, 1997
  25. 오성권, 박춘성, 박병준, '적응 퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링', 대한전기학회 논문지, 48A권, 10호, pp.1293-1302, 1999