A New One Terminal Numerical Algorithm for Adaptive Autoreclosure and Fault Distance Calculation

적응 자동 재폐로 및 고장거리 산정을 위한 새로운 1단자 알고리즘

  • Published : 2004.08.01

Abstract

This paper presents a new numerical spectral domain algorithm devoted to blocking unsuccessful automatic reclosing onto permanent faults and fault distance calculation. Arc voltage amplitude and fault distance are calculated from the fundamental and third harmonics of the terminal voltages and currents phasors. From the calculated arc voltage amplitude it can be concluded if the fault is transient arcing fault or permanent arcless fault. If the fault is permanent automatic reclosure should be blocked. The algorithm can be applied for adaptive autoreclosure, distance protection, and fault location. The results of algorithm testing through computer simulation and real field record are given.

Keywords

References

  1. R. K. Aggarwal, A. T. Johns, Y. H. Song, R. W. Dunn and D. S. Fitton, 'Neural-network based adaptive single-pole autoreclosure technique for EHV transmission systems,' IEE Proc.-Gener. Transm. Distrib., vol. 141, pp. 155-160, March 1994 https://doi.org/10.1049/ip-gtd:19949864
  2. Y. Ge, F. Sui and Y. Xiao, 'Prediction methods for preventing single-phase reclosing on permanent fault,' IEEE Trans. on Power Delivery, vol. 4, pp. 114-121, Jan. 1989 https://doi.org/10.1109/61.19197
  3. Z. Radojevic, V. Terzija and M. Duric, 'Spectral Domain Arcing Faults Recognition and Fault Distance Calculation in Transmission Systems,' Electric Power Systems Research, vol. 37, pp. 105-113, 1996 https://doi.org/10.1016/0378-7796(96)01044-9
  4. Z. Radojevic and M. Duric, 'Arcing Faults Detection and Fault Distance Calculation on Transmission Lines Using Least Square Technique,' International Journal of Power and Energy Systems, vol. 18, no. 3, pp. 176-181, 1998
  5. Z. Radojevic and Joong-Rin Shin, 'Numerical Algorithm for Adaptive Autoreclosure and Fault Distance Calculation,' Proceedings of the KIEE PES Autumn Annual Conference 2003, Mrina Resort, Chungmu, Kuyngsangdo, Korea, November 13-15, 2003, pp. 79-81
  6. M. S. Sachdev (Coordinator), 'Advancements in Microprocessor Based Protection and Communication,' IEEE Tutorial Course Text, Publication No. 97TP120-0, 1997
  7. V. Terzija and D. Nelles, 'Parametrische Modelle des Lichtbogens und Parameterschatzung auf Grund der simulierten und echten Daten,' TB-183/93, Univ. Kaiserslautern, July 1993
  8. T. Funabashi, H. Otoguro, Y. Mizuma, L. Dube, M. Kizilcay and A. Ametani, 'Influence of Fault Arc Characteristics on the Accuracy of Digital Fault Locators,' IEEE Trans. on Power Delivery, vol. 16, pp. 195-199, April 2001 https://doi.org/10.1109/61.915482
  9. A. T. Johns, R. K. Aggarwal and Y. H. Song, 'Improved technique for modelling fault arc on faulted EHV transmission systems,' IEE Proc.-Gener. Transm. Distrib., vol. 141, pp. 148-154, March 1994 https://doi.org/10.1049/ip-gtd:19949869
  10. L. Eriksson, M. Saha, G. D. Rockfeller, 'An Accurate Fault Locator with Compensation for Apparent Reactance in the Fault Resistance Resulting from Remote-End Infeed,' IEEE Trans. on PAS, vol. PAS 104, pp. 424-436, February 1985
  11. Westinghouse Relay-Instrument Division, Applied Protective Relaying, Westinghouse Electric Corporation, Newark, New York, 1976
  12. A. S. Maikapar, 'Extinction of an Open Electric Arc,' Elektrichestvo, vol. 4, pp. 64-69, 1960
  13. D. Lonard, R. Simon, V. Terzija, 'Simulation von Netzmodellen mit zwei seitiger Einspeisung zum Test von Netzschutz-einrichtungen,' TB-157/92, Univ. Kaiserslautern, 1992