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The Effect of High-Sucrose and High-Fat Diets on the Expression of
Uncoupling Proteins (UCPs) mRNA Levels in Mice
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The objective of this study was to examine dietinduced changes in the expression of UCP2 mRNA in the liver and UCP3
mRNA in the skeletal muscle of mice fed a high-sucrose or high-fat diet. Male ICR mice, aged 4 weeks, were divided into
three dietary groups and fed control (N) or modified AIN-76 high-sucrose (HS) or high-fat (HF) diets for 12 weeks. The
serum total cholesterol (TC) and LDL-cholesterol concentrations of the HF group were significantly higher than those of
the N and HS groups. The hepatic TC and triglyceride contents of the HS and HF groups were also significantly higher
than those of the N group. The HS diet group had higher serum leptin and insulin levels compared to those of the HF group.
Hepatic UCP2 mRNA expression was significantly higherin the HS group than in the N group, but the level in the HF group
did not differ from that of the N group. Muscular UCP3 mRNA level was significantly higher in the HF group and especially
in the HS group thanin N the group. We observed that two gene (UCP2, 3) levels exhibited a similar tendency. These results
suggest that UCPs mRNA levels and energy expenditure may be altered or controlled by various dietary pattems. Further
research is needed to elucidate the effects of diet on the regulation of many obesity-related genes.
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INTRODUCTION

Uncoupling proteins (UCPs) are mitochondrial inner
membrane proteins. UCPs allow the dissipation of part of
the proton electrochemical gradient generated by the elec-
tron transfer chain across the mitochondrial inner mem-
brane and can thus increase heat production by uncoupling
respiration from ATP synthesis."’

UCP2 mRNA is expressed in numerous types of tissue such
as that in the liver, skeletal muscle, heart, and kidney. UCP3
is expressed mainly in the skeletal muscle.”™ The presence
of UCP3 mRNA in the skeletal muscle is of great interest be-
cause this tissue is an important site of diet-induced thermo-
genesis and energy homeostasis in animals.® Also, under rest-
ing conditions, skeletal muscle is the major determinant of
resting metabolic rate.” UCPs are probably significant since
the proton leak, in part sustained by UCPs, contributes up to
50% of the basal respiration rate of the skeletal muscle and up
to nearly 30% of the standard metabolic rate in rats.” UCPs
mRNA expression has been found to be influenced by man
factors including diet t ,9’”) environmental temperature,
hormones, and exercise. Specifically, UCP genes are upre-
gulated in response to fat consumption > and sucrose/carbo-
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hydrate consumption.z’1 D" Also, food restriction decreased
UCP3 mRNA expression in the skeletal muscle of rats and
fasting increased it 5- to 6-fold.” The results indicate that
UCPs might be important factors related to obesity. Under
these specific conditions, fatty acyl-CoA is inappropriately
esterified, leading to triacylglycerol accumulation in the adi-
pose tissue, muscle, liver, and pancreas.m Increased trigly-
ceride (TG) accumulation is positiveliy associated with in-
sulin resistance and hy‘[f:rlipide,111ia.13’1 )

Therefore, in the present study, we investigated the changes
in UCP2 and UCP3 mRNA expression in the liver and skeletal
muscle in response to a high-sucrose or high-fat diet in mice.
Furthermore, serum leptin and insulin levels were measured
to evaluate the effects of dietary patterns on lipid metabolism
in mice. Furthermore, serum leptin and insulin levels were
measured to evaluate the effects of dietary patterns on lipid
metabolism in mice.

MATERIALS AND METHODS

1. Materials

DL-methionine, fiber, choline bitartrate, and chloroform
were purchased from the Sigma Chemical Co. (St. Louis,
USA). Trizol reagent was purchased from the Invitrogen
(Carlsbad, CA, USA). An RT-PCR kit was purchased from
the Bioneer Co. (Seoul, Korea). AIN-76 vitamin and mineral
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mixes were purchased from Harlan Teklad (Madison, USA).
Casein was purchased from Cottee (Gordon, Australia).

2. Animals and Diets

Twenty one male ICR mice (28.3-32.5 g BW), aged 4
weeks, were purchased from Daehan Biolink Inc. (Eumsung,
Chungbuk, Korea). The mice were initially fed an AIN-76
control diet for one week and then were divided into dietary
groups and fed either the AIN-76 (N) diet or one of two
modified AIN-76 diets adjusted to provide either a high-
sucrose (HS) or high-fat (HF) diet as previously reported (see
Table 1 and 2 for references) for 12 weeks. The mice were
individually housed in polycarbonate cages in a temperature
and humidity-controlled (23+1 C, 53+2%) room. The
animals were maintained on a light/dark cycle (12 hr/12 hr
light/dark) with free access to diet and water.

Table 1. Composition of experimental diets

Ingre dient Norn:al High sucrose High Fat
diet” diet” diet”
Casein 20.0 20.0 20.0
DL-Methionine 0.3 Q0.3 0.3
Corn starch 15.0 3.0 -
Sucrose 50.0 66.3 50.0
Fiber 5.0 5.0 5.0
Corn oil 5.0 0.7 -
Beef tallow - - 20.0
AIN-76 Mineral mix 35 3.5 3.5
AIN-76 Vitamin mix 1.0 1.0 1.0
Cholin bitartrate 0.2 0.2 Q.2
Total (%) 100.0 100.0 100.0

1) reference 47, 2) reference 48, 3) reference 49

Table 2. Caloric content of experimental diets (% Kcal)

Diet Carbohydrate Protein  Fat Total
Normal diet 67.3 21.0 11.7 100.0
High-sucrose diet 76.0 223 1.7 100.0
High-fat diet 43.4 17.6 39.0 100.0

3. Sampling

Food was withheld for 12 hours before the rats were
sacrificed. The blood was centrifuged at 1,100 x g for 15 min
at 4 C, and serum was stored at 20 C until analysis. The
liver and skeletal muscle were collected, immediately frozen
in liquid nitrogen, and stored at -80 C until analyzed.

4. Analysis of lipids

Serum TG was enzymatically measured using a
commercial kit (Asan Pharm. Co., Seoul, Korea) based on the
lipase-glycerol phosphate method.™ Serum total cholesterol
(TC) was also assayed using a commercial kit (Asan Pharm.
Co.) based on the cholesterol oxidase method. " Serum LDL-
cholesterol (LDL-C) was calculated from the serum TG, TC,

and HDL-cholesterol (HDL-C) concentrations using the
Friedewald formula.'® Liver tissue was minced thoroughly
while on ice, and representative aliquots of each were used to
determine the concentrations of TG and TC in the liver using
the enzymatic method described above in serum. An
atherogenic index (AI) was calculated as: Al = [TC]-[HDL-
C}/ [HDL-C].>"

5. Analysis of serum leptin and insulin

Serum leptin and insulin levels were analyzed using a
mousefrat leptin radioimmunoassay kit (Mediagnost,
Aspenhaustr, Germany) and insulin radioimmunoassay kit
(ICN Pharmaceuticals, Inc., Costa Mesa, USA), respectively.

6. Isolation of total RNA

Total RNA from the skeletal muscle and the liver were iso-
lated using the guanidinium thiocyanate-phenol-chloroform
extraction method.'” Total RNA was quantified by measur-
ing absorption at 260 nm and 280 nm.

7. RT-PCR detection of UCPs mRNA expression

cDNA was made using random hexamer primers as
described by the manufacturer (One-step RT-PCR kit from
ABgene, USA) (Table 3). The RT-PCR Master Mix
contained the thermoprime plus DNA polymerase optimized
reaction buffer, ANTP mix, and MgCl.

Table 3. Primers and reaction conditions used for PCR

Gene  Forward & Reverse primer AT.” PS.?
UCP 2-F 5" GGAGCT TTA GAT GCA GAC CG 3’ 557 1284
UCP 2-R 5" GCT CTG GGA TCC TAA ACA GG 3’ ’
UCP 3-F 5’ GCC CCT ACA CCT GAC CTT GG 3’

50 T 1,073

UCP 3-R 5" CCC CTG GGC AGA GAA GCT TTG TT 3’
1) AT, annealing temperature ('C); 2) PS, product size (bp)

8. Statistical analysis

Results were expressed as mean = SD. Differences
between means were evaluated using SAS version 8 (SAS
Institute, Cary, NC, USA). Significances of differences
among the three groups were determined using Duncan’s
multiple range test and the accepted level of significance was
p <0.05.

RESULTS AND DISCUSSION

Earlier studies demonstrated that the mRNA expression
of UCPs is affected by dietary composition, "' fasting,'”
hyperglycemiazO’ZI) and insulin resistance.”” These studies
demonstrated that UCPs mRNA expression could control
energy expenditure. Therefore, we evaluated the effect of diet
on different UCPs expressed in different tissue by measuring
UCP2 in the liver and UCP3 gene expression in the skeletal
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muscle (gastrocnemius) of mice fed normal, HS or HF diets.
Animals on the HF diet ate significantly less food than
animals on the control and HS diets. However, there was no
difference in energy intake and body weight gain over the 12-
week period (Table 4). Several studies have demonstrated
that increased carbohydrate and saturated fat may induce
obesity in the absence of increased energy intake.”*"

Table 4. Body weight gain, feed consumption, energy intake, and
feed efficiency ratio of mice

Normal Highsucrose  High-fat
diet diet diet

Body weight gain NS

(g/12weeks) 10.90£1.09 10.54+2.21 11.27+1.32
(o comsumption 616056 5.67:063" 4211054
Energy intake NS

(kealld) 24.17£2.24 20.60+2.64  20.15+2.71
Feed efficiency ratio  1.95+038°  1.71+0.83°  3.12:0.73"

All values are means+SD. Values with different superscripts in the same rows
are significantly different (p<0.05). Feed efficiency ratio was calculated as (total
weight gainftotal dietary intake). NS: not significantly different

In this study we demonstrated that high-fat and high-
sucrose diets did not affect serum lipid profiles, but did
increase TC or TG levels in the liver (Table 5) in the absence
of increased energy intake. It is reasonable to assume that
the lower dietary intake in the HF diet group may be due to an
adaptation to maintain energy balance in the body.

It has been known for several decades that both high-carbo-
hydrate and high-fat diets induce hypertri glyceridemia®
which typically accompanies insulin resistance.”” It has been
shown that fatty acid oxidation decrease, but esterification of
fatty acids and secretion of TG increase in the livers of obese
Zucker rats.””*® The increased plasma TG levels associated
with dietary sucrose mi$ht be due to either increased secretion
of TG from the liver’ or decreased TG removal from the
plasma.zg) The concentration of circulating TG is determined
by delivery into plasma and subsequent removal of TG-rich
lipoproteins by the tissues. Plasma TG is derived from the diet
and hepatic synthesis and released as VLDL. Increased avail-
ability of non-esterified fatty acids and high insulin levels

Table 5. Lipid profiles of serum and liver in mice

prompt hepatic TG synthesis.m) In this study, serum TG levels
were not significantly different among the groups, but hepatic
TG concentrations significantly increased owing to the HF
and HS diets. Therefore, it is speculated that HS and HF diets
might increase the acyl-CoA pool leading to increased TG
storage in the liver, as found in this study (Table 5).

Decreases in insulin-stimulated glucose metabolism have
been demonstrated to be associated with decreases in leptin
expression and secretion in isolated adipocytes.3l) Enhanced
lipolysis has been associated with decreased leptin synthesis
in some studies.”™ Ainslie er al. ** reported that feeding rats
an HF diet for 4 weeks contributed to reductions in leptin
secretion in the adipose tissue. In this study, there were
significantly higher circulating leptin concentrations in mice
fed an HS diet than in those fed an HF diet. The lower leptin
secretion in animals on a higher-fat diet than in those fed a
high-sucrose diet may be due to an insulin effect, since insulin
has been identified as a possible mediator of leptin
secretion.”” Insulin is known to be an important inhibitor of
1ipolysis.35) Consumption of an HF diet would be expected to
decrease insulin levels leading to less inhibition of lipolysis,
which would result in higher free fatty acid availability and
increased free fatty acid oxidation. In this study, the HS diet
increased serum leptin and insulin levels whereas the HF diet
did not (Table 6). It has been reported that the incubation of
mice islets for several days in high glucose media induces a
dramatic increase in insulin mRNA levels.™® Our results
support, in part, the role of diet in the coordinated regulation
of serum leptin and insulin concentrations under our
experimental conditions.

To evaluate if dietary patterns change the expression of
UCPs mRNA levels, we measured the expression of UCP2

Table 6. Levels of serum leptin and insulin in mice

Normal diet High-sucrose High-fat diet
255:1.36™  3.32+2.14 1.73+0.46
25.78+2.79%  27.29+4.09° 19.48+4.16"

All values are means + SD (n=7). Values with different superscripts in the
same row are significantly different (P < 0.05). NS: not significantly different

Leptin (ng/mL)
Insulin (nIU/mL)

Normal diet High-sucrose diet High-fat diet
Serum
TG (mg/dl) 78.00+12.83™ 74.85+14.96 70.72+10.61
TC (mg/dl) 180.21+24.72™° 178.27+39.23 204.08+30.17
HDL C (mg/dl) 50.27+9.87™ 46.99+4.66 47.55+7.59
LDL C (mg/dl) 104.62+13.91° 112.57+26.20™ 141.29+18.55°
Atherogenic index 2.58+0.54 3.00+0.48 2.92+0.43
Liver
TC (mg/g Liver) 5.86+1.53° 16.21£7.30* 11.23£2.37°
TG (mg/g Liver) 32.21+7.50" 53.28+15.33° 58.14+16.20"

All values are means+SD. Values with different superscripts in the same row are significantly different (P<0.05). TG, triglyceride; TC, total cholesterol; HDL-C,
HDL-cholesterol; LDL-C, LDL cholesterol; Atherogenic index means the tatio of (total cholesterol-HDL-C)/HDL-C. NS: not significantly different
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Fig. 1. Expression of UCP2 cDNA in liver by alteration of diet

composition.

N, Normal diet group; HS, high sucrose diet group; HF, high fat diet group.
The error bars show the standard deviations of the means. Differences were
considered significant at p<0.05. The expression level in each animal was
quantified by densitometry.

mRNA in the liver and UCP3 mRNA in the skeletal muscle,
as shown in Figures 1 and 2. Hepatic UCP2 mRNA levels
in the HS diet group were significantly higher than those in
the N group, and muscular UCP3 mRNA levels in both the HS
and HF diet groups were higher than those in the N group.
However, the high sucrose/carbohydrate diet had a greater
effect on the expression of UCPs mRNA in the subjects on the
HF diet. These results were the opposite of the results of most
eatlier investigators.38’39) Our data suggests that alteration of
diet composition affects UCPs mRNA expression. Previous
studies reported that an HF diet increased'®”” or didn’t
affec“” mRNA expression of UCPs in the skeletal muscle,
adipose tissue and liver. Since free fatty acids (FFAs) are
thought to increase UCP3 mRNA levels, it has been
suggested that they facilitate fatty acid metabolism by
UCP2,*” Fatty acids have been proposed as major regulators
of UCP3 mRNA in the skeletal muscle of adult rodents.*”
Perhaps for this reason, an HF diet increased UCPs mRNA
expression in the skeletal muscle because it increased the
availability of fatty acids as a substrate.”>*> However,
regulation of UCPs mRNA expression by some factors is
influenced by muscle type. It would be of interest to draw a
comparison between the present findings and the
observations of others that UCP gene expression in the soleus
muscle is highly dependent on changes in circulating FFAs,
and the fact that even under normal feeding conditions, such
predominantly slow-twitch muscle is more dependent on
circulating lipids as a fuel substrate than fast-twitch muscle
(in which glucose is also an important fuel substrate).”” In

Muscle UCP3
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Fig. 2. Expression of UCP3 c¢DNA in skeletal muscle (gastrocnemius)
by alteration of diet composition.

N, Normal diet group; HS, high sucrose diet group; HF, high fat diet group.
The error bars show the standard deviations of the means. Differences were
considered significant at p<0.05. The expression level in each animal was
quantified by densitometry.

another study, HF feeding induced obesity in mice, which was
associated with induction of UCP2 expression in white
adipose tissue but not with changes in UCP3 expression in the
muscle.”"*" Long-term changes in caloric intake affect the
expression of UCP3 mRNA but not of UCP2 mRNA in the
skeletal muscle,” demonstrating significant differences in
how UCP2 and UCP3 are regulated. Other investigators '
have also studied the effects of high sucrose/carbohydrate
diets on the expression of UCP mRNA. Levine’s study“)
showed that sucrose [10% (w:v) solution] feeding for 2
weeks led to elevated UCP3 gene expression in the muscle
and to decreased energy efficiency, suggesting that the effects
of sucrose on energy balance may be mediated by UCP3.
Furthermore, UCP3 expression positively correlates with
whole-body insulin-mediated glucose utilization.”” In a study
by Hidaka et al.,” glucose concentrations in streptozotocin-
treated rats increased, even though UCP3 mRNA expression
in the adipose tissue decreased, and the expression in muscle
increased. Perhaps, as the concentration of glucose increases,
UCPs’ expression increases in parallel.* Because it takes
less energy to store fat from dietary lipids than to synthesize
fat from carbohydrates via de novo lipogenesis, a shift in
muscle substrate utilization in favor of glucose during
consumption of a low-fat, high-carbohydrate diet would be an
energetically more efficient way to deposit fat. This would be
in keeping with a role of these UCP homologs in the
regulation of lipids as a fuel substrate.”” In fact, increases in
glucose utilization markedly stimulated thermogenesis in
association with translocation of glucose transporters to the
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plasma membrane.” Furthermore, glucose metabolism
could be enhanced by overexpression of UCP2,*” or when
muscular UCP3 mRNA expression is upregulated under
conditions of energy conservation caused by suppressed
thermogenesis.zl) These results suggest that UCPs mRNA
levels are altered by changes in diet patterns and provide
evidence that energy expenditure can be modulated by diet.

In summary, our results demonstrate that an HS diet
increases UCP2 expression in the liver and that both HF and
HS diets increase UCP3 in the muscle, suggesting that dietary
regulation of mitochondrial UCPs plays an important role in
regulating energy metabolism. We also postulate that the
utilization of sucrose rather than fat in the liver and skeletal
muscle is a more effective way to upregulate the UCPs
expression than an HF diet.
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