DOI QR코드

DOI QR Code

구 후류에 미치는 유동장 밀도 성층화 영향 전산 해석

Numerical Study for Effects of Density-Stratification on Wake Behind a Sphere

  • 이승수 (충북대학교 구조시스템공학과) ;
  • 양경수 (인하대학교 기계공학과) ;
  • 박찬욱 (대불대학교 기계공학과)
  • 발행 : 2004.05.01

초록

Stratified flow past a three-dimensional obstacle such as a sphere has been a long-lasting subject of geophysical, environmental and engineering fluid dynamics. In order to investigate the effect of the stratification on the near wake, in particular, the unsteady vortex formation behind a sphere, numerical simulations of stratified flows past a sphere are conducted. The time-dependent Navier-Stokes equations are solved using a three-dimensional finite element method and a modified explicit time integration scheme. Laminar flow regime is considered, and linear stratification of density is assumed under Bossiness approximation. The computed results include the characteristics of the near wake and the unsteady vortex shedding. With a strong stratification, the separation on the sphere is suppressed and the wake structure behind the sphere becomes planar, resembling that behind a vertical cylinder.

키워드

참고문헌

  1. Hubert, L. E. and Krueger, A. F., 1962, 'Satellite Pictures of Mesoscale Eddies,' Month. Weather Rev., Vol. 90, pp. 457-463 https://doi.org/10.1175/1520-0493(1962)090<0457:SPOME>2.0.CO;2
  2. Sheppard, P. A., 1956, 'Airflow Over Mountains,' Quart. J. R. Met. Soc., Vol. 82, pp. 528-529 https://doi.org/10.1002/qj.49708235418
  3. Debler, W., 1972, 'The Towing of Bodies in a Stratified Fluid,' Int. Symp. Stratified Flows, ASCE, pp. 194-220
  4. Devler, W. and Fitzgerald, P., 1971, 'Shadowgraph Observations of the Flow Past a Sphere and a Vertical Cylinder in a Density Strafied Liquid,' Tech. Rep. Em-71-3, Dept. of Engrg Mech., Univ. of Michigan
  5. Honji, H., 1987, 'Near Wakes of a Sphere in a Stratified Fluid,' Fluid Dyn.Res., Vol. 2, pp. 75-76 https://doi.org/10.1016/0169-5983(87)90019-0
  6. Brighton, P. W. M., 1978, 'Strongly Stratified Flow Past Three-Dimensional Obstacles,' Quart. J. R. Met. Soc., Vol. 104, pp. 289-307 https://doi.org/10.1002/qj.49710444005
  7. Lin, Q., Lindberg, W. R., Boyer, D. L. and Fernando, H. J. S., 1992, 'Stratified Flow Past a Sphere,' J. Fluid Mech., Vol. 240, pp. 315-354 https://doi.org/10.1017/S0022112092000119
  8. Chomaz, J. M., Bonnetion, P. and Hopfinger, E. J., 1993, 'The Structure of the Near Wake of a Sphere Moving Horizontally in a Stratified Fluid,' J. Fluid Mech., Vol. 254, pp. 1-21 https://doi.org/10.1017/S0022112093002009
  9. Greshop, P. M., Chan, S. T., Lee, R. L. and Upson, C. D., 1984, 'A Modified Finite Element Method for Solving the Time-Dependent, Incompressible Navier-Stokes Equations Part I:Theory,' Int. J. Num. Methods Fluids, Vol. 4, pp. 557-598 https://doi.org/10.1002/fld.1650040608
  10. Hanazaki, H., 1988, 'A Numerical Study of Three-Dimensional Stratified Flow Past a Sphere,' J. Fluid Mech., Vol. 192, pp. 393-419 https://doi.org/10.1017/S0022112088001910
  11. Gill, A. E., 1982, Atomosphere-ocean dynamics, Academic Press, San Diego, CA. USA
  12. Brooks, A. and Hughes, J. R., 1982, 'Steamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on Incompressible Navier-Stokes Equatinos,' Comp. Methods in App. Mech. Eng., Vol. 32, pp. 199-259 https://doi.org/10.1016/0045-7825(82)90071-8
  13. Chan, S. T., Gresho, P. M., Lee, R. L. and Upson, C. D., 1981, 'Simulation of Three-Dimensional, Time-Dependent, Incompressible Flows by a Finite Element Method,' Lawrence Livermore Labratory Report UCRL-85226
  14. Lee, S., 2000, 'A Numerical Study of the Unsteady Wake Behind a Sphere in a Uniform Flow at Moderate Reynolds Numbers,' Computers & Fluids, Int. J., Vol. 9, No. 6, pp. 639-667 https://doi.org/10.1016/S0045-7930(99)00023-7
  15. Franke, R., Rodi, W. and Schonung, B., 1990, 'Numerical Calculation of Laminar Vortex Shedding Flow Past Cylinders,' Int. J Wind Eng. & Ind. Aerodyn., Vol. 35, pp. 237-257 https://doi.org/10.1016/0167-6105(90)90199-M
  16. Johnson, T. A. and Patel, V. C., 1999, 'Flow Past a Sphere up to a Reynolds Number of 300,' J. Fluid Mech., Vol. 378, pp. 19-79 https://doi.org/10.1017/S0022112098003206