Numerical Calculation of Minimum Ignition Energy for Hydrogen and Methane Fuels

  • Kim, Hong-Jip (Korea Aerospace Research Institute) ;
  • Chung, Suk-Ho (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Sohn, Chae-Hoon (Department of Aerospace Engineering, Chosun University)
  • Published : 2004.05.01

Abstract

Minimum ignition energies of hydrogen/air and methane/air mixtures have been investigated numerically by solving unsteady one-dimensional conservation equations with detailed chemical kinetic mechanisms. Initial kernel size needed for numerical calculation is a sensitive function of initial pressure of a mixture and should be estimated properly to obtain quantitative agreement with experimental results. A simple macroscopic model to determine minimum ignition energy has been proposed, where the initial kernel size is correlated with the quenching distance of a mixture and evaluated from the quenching distance determined from experiment. The simulation predicts minimum ignition energies of two sample mixtures successfully which are in a good agreement with the experimental data for the ranges of pressure and equivalence ratio.

Keywords

References

  1. Akram, M., 1996, 'Two Dimensional Model for Spark Discharge Simulation in Air,' AIAA Journal, Vol. 34, pp. 1835-1845 https://doi.org/10.2514/3.13315
  2. Akram, M. and Lundgren, E., 1996, 'The Evolution of Spark Discharges in Gases : I. Macroscopic Models,' Journal of Physics D : Applied Physics, Vol. 29, pp. 2129-2136 https://doi.org/10.1088/0022-3727/29/8/011
  3. Au, S., Haley, R. and Smy, P. R., 1992, 'The Influence of the Igniter-Induced Blast Wave Up-on the Initial Volume and Expansion of the Flame Kernel,' Combustion and Flame, Vol. 88, pp. 50-60 https://doi.org/10.1016/0010-2180(92)90006-B
  4. Calcote, H. F., Gregory, C. A. Jr., Barnett, C. M. and Gilmer, R. B., 1952, 'Spark Ignition,' Industrial and Engineering Chemistry, Vol. 44, pp. 2656-2662 https://doi.org/10.1021/ie50515a048
  5. Friedman, R., 1949, 'The Quenching of Laminar Oxyhydrogen Flames by Solid Surfaces,' Proceedings of the Combustion Institute, Vol. 3, pp. 110-120
  6. Gaydon, A. G. and Wolfhard, H. G., 1979, Flames, Their Structure, Radiation, and Temperature, 4th Ed., John Wiley & Sons, New York, P. 25
  7. Kailasanath, K., Oran, E. AND Boris, J., 1982, 'A Theoretical Study of the Ignition of Premixed Gases,' Combusition and Flame, Vol. 47, pp. 173-190 https://doi.org/10.1016/0010-2180(82)90099-2
  8. Kee, R. J, ;Warnatz, J. and Miller, J. A., 1983, A Fortran Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients, Sandia National Laboratories Report No. SAND83-8209
  9. Kee, R. J., Rupley, F. M. and Miller, J. A., 1989, CHEMKIN-II : A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, Sandia National Laboratories Report No. SAND89-8009
  10. Kim, S. -K., Lee, J. K., Kim, Y. -M., Ahn, J. H., 2002a, 'Numerical Modeling of Combustion Processes and Pollutant Formations in Direct-Injection Diesel Engines,' KSME International Journal, Vol. 16, No. 7, pp. 1009-1018
  11. Kim, H., Lim, Y., Min, K. and Lee, D., 2002b, 'Investigation of Autoignition of Propane and n-Butane Blends Using a Rapid Compression Machine,' KSME International Journal, Vol. 16, No. 8, pp. 1127-1134 https://doi.org/10.1007/BF02984023
  12. Lewis, B. and von Elbe, G., 1987, Combustion, Flames and Explosion fo Gases, 3rd Ed., Academic Press, Orlando, p. 333
  13. Maas, U. and Warnatz, J., 1988, 'Ignition Processes in Hydrogen-Oxygen Mixtures,' Combustion and Flame, Vol. 74, pp. 53-69 https://doi.org/10.1016/0010-2180(88)90086-7
  14. Moorhouse, J., Williams, A. and Maddison, A. E., 1974, 'An Investigation of the Minimum Ignition Energies of Some $C_1$ to $C_7$ Hydrocarbons,' Combustion and Flame, Vol. 23, pp. 203-213 https://doi.org/10.1016/0010-2180(74)90058-3
  15. Peters, N., 1991, 'Flame Calculations with Reduced Mechanisms - An Outline,' in Reduced Kinetic Mechanisms for Applications in Combustion Systems (N. Peters and B. Rogg Eds.), Vol. 15 of Lecture Notes in Physics, Springer-Verlag, pp. 3-14
  16. Rose, H. E. and Priede, T., 1958, 'Ignition Phenomena in Hydrogen-Air Mixtures,' Proceedings of the Combustion Institute, Vol. 7, pp. 436-445
  17. Sher, E., Ben-Ya'ish, J. and Kravchik, T., 1992, 'On the Birth of Spark Channels,' Combustion and Flame, Vol. 89, pp. 186-194 https://doi.org/10.1016/0010-2180(92)90027-M
  18. Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, Jr. W. C., Lissianski, V. V. and Qin, Z., 2000, GRI-Mech Website http://www.me.berkeley.edu/gri_mech/
  19. Smooke, M. D., Miller, J. A. and Kee, R. J., 1983, 'Determination of Adiabatic Flame Speeds by Boundary Value Methods,' Combustion Science and Technology, Vol. 34, pp. 79-90 https://doi.org/10.1080/00102208308923688
  20. Sohn, C. H. and Chung, S. H., 1995, 'A Numerical Study on Normal and Abnormal Combustion in Hydrogen Premixture,' Transactions of Korean Society of Mechanical Engineers, Vol. 19, pp. 1989-1998 (in Korean)
  21. Thiele, M., Warnatz, J., Dreizler, A., Lindenmaier, S., Schieszl, R., Maas, U., Grant, A. and Ewart, P., 2002, 'Spark ignited Hydrogen/air Mixtures : Two Dimensional Detailed Modeling and Laser Based Diagnostics,' Combustion and flame, Vol. 128, pp. 74-87 https://doi.org/10.1016/S0010-2180(01)00333-9
  22. Williams, F. A., 1985, Combustion Theory, 2nd Ed., Addison-Wesley, Menlo Park, CA, p. 268