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MATRIX PRESENTATIONS OF THE TEICHMULLER SPACE OF
A PUNCTURED TORUS

Hong CHAN KiMm

ABSTRACT. A punctured torus £(1,1) is a building block of oriented surfaces. The
goal of this paper is to formulate the matrix presentations of elements of the Te-
ichmiiller space of a punctured torus. Let C be a matrix presentation of the bound-
ary component of ¥(1,1). In the level of the matrix group SL(2, R), we shall show
that the trace of C is always negative.

INTRODUCTION

The (PSL(2,R), H?)-structures on a connected smooth surface M are called the
hyperbolic structures on M. If x(M) < 0, then the equivalence classes of hyperbolic
structures on M form a deformation space T(M) called the Teichmiiller space.

Let m = m1(M) be the fundamental group of M. Given a hyperbolic structure on
M, the action of 7 by deck transformation on the universal covering space M of M
determines a homomorphism 7 — PSL(2,R) called the holonomy homomorphism
and it is well-defined up to conjugation in PSL(2,R). Thus the Teichmiiller space
%(M) has a natural topology which identified with an open subset of the orbit space
Hom(w, PSL(2,R))/PSL(2,R). Since holonomy homomorphisms 7 — PSL(2, R)
are isomorphic to their images, the generators of 7 can be presented by the conjugacy
classes of matrices in PSL(2, R).

Let M = ¥(g,n) be a compact connected oriented surface with g-genus and
n-boundary components. Then M can be decomposed as a disjoint union of g
punctured tori £(1, 1) and 2g — 2+ n pairs of pants £(0, 3). Thus a punctured torus
and a pair of pants (0, 3) are building blocks of an oriented surface M. The matrix
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presentations of a pair of pants (0, 3) are classified in the preceding paper Kim (7).
The purpose of this paper is to formulate the matrix presentations of elements of
the Teichmiiller space of a punctured torus 3(1,1).

In Section 1, we recall some preliminary definitions and describe the relation
between the deformation space ©(M) of (G, X )-structures on a smooth manifold M
and the orbit space Hom(7,G)/G. In Section 2, we define the hyperbolic elements
of SL(2,R) and PSL(2,R) and classify the locations of fixed points and principal
lines of hyperbolic elements. In Section 3, we calculate the matrix presentations of
elements of the Teichmiiller space T(%X(1,1)). Let C be a matrix presentation of the
boundary component of X(1,1). In the level of the matrix group SL(2,R), we shall
show that the trace of C' is always negative.

1. (G, X)-STRUCTURES ON A SMOOTH MANIFOLD M

1.1. An action of a connected Lie group G on a smooth manifold X is called
strongly effective if g1,g2 € G agree on a nonempty open set of X, then g1 = gs.
Let Q be an open subset of X. A map ¢ : @ — X is called locally-(G, X) if for
each component W C €, there exists a (G, X)-transformation ¢ € G such that
olw = g|lw. Since G acts strongly effectively on X, above element g is unique for
each component. Clearly a locally-(G, X) map is a local diffecomorphism.
Let M be a connected smooth n-manifold. A (G, X)-structure on M is a maximal
collection of coordinate charts {(Uq, ¥q)} such that
(1) {U,} is an open covering of M.
(2) For each a, 9q : Uy = X is a diffeomorphism onto its image.
(3) The change of coordinates is locally-(G, X); If (Ua,%.) and (Ug, ) are two
coordinate charts with Uy, N Ug # @, then the transition function g o ¥ .
Yo (Ua NUg) — g(Us N Ug) is locally-(G, X).

Now we give an example of a (G, X)-structure.

Ezample 1.1. Let H? = {z € C | Im(z) > 0} be the upper half complex plane. Then
SL(2,R) acts on H? by

a b az+b
Since we have A -z = (—A) - z for any A € SL(2,R) and z € H?, the Lie group
PSL(2,R) = SL(2,R)/+1 acts strongly effectively on H2.
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Definition 1.2. A (PSL(2,R), H?)-structure on a smooth surface M is called a
hyperbolic structure on M,

1.2. A manifold M with a (G, X)-structure is called a (G, X )-manifold. Let N be
a (G, X)-manifold. If f : M — N is a local diffeomorphism of smooth manifolds,
then we can give the induced (G, X)-structure on M via f. In particular every
covering space of a (G, X )-manifold has the canonically induced (G, X)-structure.

Let M and N be (G, X)-manifolds and f : M — N a smooth map. Then f is
called a (G, X)-map if for each coordinate chart (U,%y) on M and (V,¢v) on N,
the composition 1y o f o 1/)51 oy (FHV)NU) = ¢y (F(U) N V) is locally-(G, X).

The following Development Theorem is the fundamental fact about (G, X)-struc-
tures. For more details (see Thurston (8]).

Theorem 1.3. Let p : M — M denote a universal covering map of a (G, X )-
manifold M, and 7 the corresponding group of covering transformations.

(1) There ezist a (G, X)-map dev : M — X and homomorphism h : = - G such
that for each v € w the following diagram commutes:

M dev X

1| |4
M — X
dev
(2) Suppose (dev', ') is another pair satisfying above conditions. Then there ezists

a (G, X)-transformation g € G such that dev' = go dev and h' = 1y 0 h where
tg : G = G denotes the inner automorphism defined by g; that is,

W(y)=(tgoh)(v) =goh(y)og":

M dev) X i, X

“fl k(%) 1’1’(7)

M s X s X
dev g

The (G, X)-map dev : M — X called the developing map and the homomorphism
h :m — G is called the holonomy homomorphism. The image I' = h(m) C G is
called the holonomy group and the image Q = dev(M) C X is called the developing
image. By Theorem 1.3, the developing pair (dev, h) is unique up to the G-action

by composition and conjugation respectively.
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Consider a pair (f,N) where N is a (G, X)-manifold and f : M — N is a
diffecomorphism. Then M admits the induced (G, X)-structure via f. The set of
all such pairs (f, N) is denoted by A(M). Then A(M) is the space of all (G, X)-
structures on M. We say two pairs (f, N) and (f',N') in A(M) are equivalent if
there exists a (G, X)-diffeomorphism g : N — N’ such that g o f is isotopic to f'.
The set of equivalence classes A(M)/~ will be denoted by ©(M) and called the
deformation space of (G, X)-structures on M.

Definition 1.4. Let M be a connected smooth 2-manifold. The deformation space
of the hyperbolic structures on M is called the Teichmiiller space and denoted by
T(M).

1.3. The deformation space D(M) is closely related to Hom(m,G)/G the orbit
space of homomorphisms ¢ : # — G. Suppose M = X(g,n) is a compact oriented
smooth surface with g-genus, n-boundary components and x(M) =2 -2g - n < 0.
Then 7 admits 2g+n generators Ay, By, ..., Ag, By, C1, ..., Cy, with a single relation

R=ABIAT'B] ' - AB,A7'B;'Cy -+ Cr = 1.

From the correspondence of the homomorphism ¢ : 7 — G to the image of gen-
erators, Hom(m, G) may be identified with the collection of all (2g + n)-tuples
(A1,Bi1,...,A4,Bg,C1,...,Cpn) C G*7%" elements of G satisfying

R(A1,By,..., Ay, B, Ch,...,Co) = 1I.
Since R: G¥*" — G is a polynomial equation and
(1.2) Hom(r,G) = R™Y(I) c G**™,

if G is an algebraic Lie group, then Hom(7, G) is an algebraic variety.
The group G acts on Hom(w, G) by conjugation as follows; For g € G and ¢ €
Hom(w, G), the action g - ¢ is defined by

(9-9) (1) =god(v)og™
where v € 7. Taking the holonomy homomorphism of a (G, X)-structure defines a
map
hol : (M) — Hom(m,G)/G
which is a local diffeomorphism. See Goldman [2] and Johnson & Millson (5] for

details. For the hyperbolic structures on M, the Teichmiiller space T(M) embeds
into Hom (7, PSL(2,R)) /PSL(2,R). (cf. Goldman [3])



MATRIX PRESENTATIONS OF A PUNCTURED TORUS 77

Theorem 1.5. Let M be a compact oriented surface with x(M) = 2 —2g—n <
0. Then hol : T(M) — Hom (n,PSL(2,R)) /PSL(2,R) is an embedding onto a
Hausdorff real analytic manifold of dimension 6g — 6 + 3n.

Therefore the Teichmiiller space T(M) is homeomorphic to R69-6+3" and an
element of T(M) will be identified with a conjugacy class of Hom (7, PSL(2,R)). In
the next section, we shall explicitly formulate the algebraic presentation of elements
of (M) for a punctured torus M = £(1,1).

2. MATRIX PRESENTATIONS OF A PUNCTURED TORUS

2.1. An element A of SL(2,R) is said to be Ayperbolic if A has two distinct real
eigenvalues. Since the characteristic polynomial of A is f(\) = A% — tA + 1 where
t = tr(A), A is hyperbolic if and only if tr(A)? > 4. Thus a hyperbolic element A
in SL(2,R) can be expressed by the diagonal matrix

a™l 0
(2.1) ( 0 o )
via an SL(2, R)-conjugation where a? > 1.
An element A of PSL(2,R) is said to be hyperbolic if A has two distinct fixed
points on OH2. Since the absolute value of trace is still defined, A is hyperbolic if

and only if |tr(A)| > 2. The following theorem is from Beardon’s book [1]. It was
certainly known to Fenchel, Nielsen and probably earlier.

Theorem 2.1. Suppose that M is a compact connected oriented hyperbolic surface.
Then every nontrivial element of the holonomy group ' C PSL(2,R) is hyperbolic.

Let M = ¥(g,n) be a compact connected oriented surface with g-genus and n-
boundary components. If x(M) = 2 — 2g —n < 0, then there exist 2g — 3 + n
nontrivial homotopically-distinct disjoint simply-closed curves on M such that they
decompose M as the disjoint union of g punctured tori ¥(1,1) and g — 2 + n pairs
of pants (0, 3). Thus the punctured torus X(1,1) and a pair of pants ¥(0,3) are
building blocks of an oriented surface M. For more detail (see Wolpert [9]).

The matrix presentations of a pair of pants X(0, 3) are classified in the preceding
paper Kim {7]. Thus the goal of this section is to find expressions of the elements
of the Teichmiiller space T(£(1,1)) of a punctured torus. Since T(E(1,1)) embeds
into Hom (7, PSL(2,R)) /PSL(2,R), we should calculate the matrix presentations
of the conjugacy classes of Hom (w, PSL(2, R)).
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2.2. First we consider the positions of fixed points and principal lines of hyperbolic
elements in SL(2,R). The principal line of a hyperbolic element A € SL(2,R) is
the A-invariant unique geodesic in H and it is the line joining two fixed points of
A. Since the principal line has a distinct direction, we call one of fixed point of A is
called repelling fixed point 2. and the other is called attracting fixed point z,. For

more easy understanding (see Beardon [1]) or Figure 1.

Proposition 2.2. Suppose

a b a b
A=<cd)andB=(_C d)

are hyperbolic elements of SL(2,R). If z is a fized point of A, then —z is a fized

point of B.
1 0
p=(15).

Then we can get PAP™! = B. Let z be a fixed point of A and w = Pz. Since

Proof. Let

Bw = (PAP™Y)(Pz) = P(Az) = Pz = w,

w = Pz is a fixed point of B. Therefore if z is a fixed point of A, then the point

1-240
=Pr= — = —
w =5, z
is a fixed point of B. a
B A
—2Zy j -2, 0 Za ) 2r

Figure 1. The fixed points of the matrices A and B

Thus the principal lines of A and B are symmetric with respect to the imaginary
axis.
Let
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be a hyperbolic element. We now consider the location of the principal line of A
and the relations of entries of A.

Theorem 2.3. Suppose A € SL(2,R) represents a hyperbolic transformation of H?
and z., zq are the repelling and attracting fized points of A. Then

(1) 0 < 24+ 2 < 0 if and only if (a — d)c > 0.
(2) zg-2r >0 if and only of bec<O.
(3) 24 < 2z if and only if (a+d)c < 0.

—

0 Zq A(w) ’(;} Zr

Figure 2. The principal line with 0 < z, < 2, < 0©

Proof. Since z, and z, are the fixed points of the hyperbolic transformation A(z) =

%, they are the roots of the equation
(2.2) c2?+(d—a)z—b=0.

Suppose 0 < 2z, + 2r < 00 Or 24 -2, > 0. Then the fixed points of A are neither
infinity nor zero. First we claim that ¢ # 0. If ¢ = 0, then 1 = det(A) = ad. Thus
d = a! and A(z) = a?z + ab. This yields that oo is a fixed point of A(z) since
a # 0. It contradicts the assumption. Since 24 + 2z, = “:—d and zq -2z, = :c—b, it proves
0< zg+ 2 < oo ifand only if (a —d)c > 0 and 2, - 2, > 0 if and only if bc < 0.
Since we have ¢ # 0, the roots z,, 2, of the Equation (2.2) can be expressed by

(a—d)++/(a+d)? -4
2c '
Suppose that the attracting fixed point 2z, is smaller than the repelling fixed point

(2.3) za, z?‘ =

Zr; e, 2g < zr. Let w be the mid point of the fixed points 2, and z; i.e.,
w = (24 + 2r)/2 = (a — d)/(2¢). Then the condition 2, < 2, is equivalent to
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A(w) < w. From the computation

Aw)—w = LE)TD (a_d)

(%) +d \ 2
a(a —d) +2bc (a—d) _(a+d)?-4
(a+d)c 2¢ 2(a+d)c ’
and the fact that (a + d)? > 4, it proves z, < z, if and only (a + d)c < 0. This
completes the proof. d

Theorem 2.4. Let A € SL(2,R) represent a hyperbolic transformation of H? and
2r, 2o the repelling and attracting fized points of A. Then —oc0 < 2, < 0 < 2z, < 00
if and only ifbc > 0, ac <0 and bd < 0.

> T H -+ <+ >

A(c0) 2 A(0) O Zr

Figure 3. The principal line with —oo < 24 <0 < 2, < ©

Proof. From the Theorem 2.3, we can show that 2z, - z» < 0 if and only if bc > 0.
Suppose —00 < z < 0 < 2 < co. The images of the origin and infinity under A
should be negative as in the Figure 3. That means A(0) = b/d < 0 and A(oco) =
a/c < 0. Thus we have bd < 0 and ac < 0. Conversely, the relations bc > 0 and
bd < 0 derive cd < 0. Thus we get (a + d) ¢ < 0, equivalently 2, < 2. The fact
bc < 0 implies z, - zr < 0. Since all entries of A are non-zero, we can conclude
-0 < 2, <0< 2 < 00. 0

Corollary 2.5. Let A € SL(2,R) represent a hyperbolic transformation of H2.

(1) Suppose b> 0. Then —00 < 2, < 0 < 2, < 00 if and only ifa < 0,¢c>0,d <0.
(2) Suppose b < 0. Then —o0 < 2z, <0< 2, < 00 if and only ifa > 0,¢c<0,d>0.

Proof. This follows from the result of the Theorem 2.4. a
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Theorem 2.6. Suppose C € SL(2,R) is representing a hyperbolic transformation of
H?2 with the repelling and attracting fized points wy, wq. Suppose 0 < w, < wy < 00,
then (a—d)c>0, (a+d)c<0,bc<0,a?<d?andbd > 0.

Proof. Since 0 < wq + wr < 00, wg - wr > 0 and w, < wy, from Theorem 2.3, we
have the relations (a — d)c > 0, bc < 0 and (a + d) ¢ < 0. Thus (a — d)(a + d)c? =
(a? — d?)c? < 0 implies a® < d?. Since w, < wy, the image of the origin under C
should be positive as in the Figure 2. That means C(0) = b/d > 0. Thus we have
bd > 0. This also implies b # 0 and d # 0. |

Remark 2.7. The image of infinity of C is just less than w,. Thus it is possible that
C(o0) has positive, zero, or negative signs.

Corollary 2.8. Suppose C € SL(2,R) is representing a hyperbolic transformation

of H2.

(1) Suppose thatb > 0. Then 0 < wg < wy < 00 if and only if ¢ < 0, d > 0, la| < d.

(2) Suppose that b < 0. Then 0 < wo < wr < 0o ifand only if ¢ > 0,d <0
la| < (=d).

Proof. Suppose 0 < w, < w, < o0 and b > 0. Since we have the relations bc < 0,
bd > 0 and a? < d?, the condition b > 0 yields that ¢ < 0, d > 0, and |a| < |d| = d.
Conversely, the condition |a| < d derives (a — d) < 0, and (a + d) > 0. Since ¢ < 0
we get (a—d)c > 0and (a+d)c < 0. Since be < 0, this induces 0 < w, < w, < 0.
We can similarly prove for the case b < 0. g

2.3. Recall that a punctured torus M = ¥(1,1) is a torus with a hole. Suppose
M is equipped with a hyperbolic structure. Since the holonomy homomorphism is
isomorphic to its image, the fundamental group 7 of M will be identified with

m=(AB,CePSL2,R)|R=CB'A'BA=1).

Let A, B, C € PSL(2,R) represent elements of the fundamental group of M as
in Figure 4. We will find the expression of the generators A, B and C of 7 in
terms of SL(2,R) instead of PSL(2, R) because SL(2,R) is easier to compute than
PSL(2,R). Since the matrices A4, B, C € SL(2,R) are hyperbolic and represented
up to conjugate, without loss of generality, we can assume

_10)
B=(H#
(% o
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<>

Figure 4. A punctured torus M = X(1,1)

with u2 > 1. Since we have
-1 R O
B(z) = b2t 12’
O-z+p u
oo is the repelling fixed point and 0 is the attracting fixed point of B. By the

discreteness of holonomy group, A(0) # 0. Let
a b
A= ( ¢ b ) .

a-0+b
A(O)—C-O—i-d

contradicting for A(0) # 0. Suppose tr(A) = A + A~! where A?> > 1. Since a + d =
tr(A) = A+ 27!, we have d = —a + A+ A7!. Since det(A) = ad — bc = 1, we obtain

Then b # 0. If b = 0, then

=0,

be=ad—1=a(—a+A+2" ) =-1=—(a-MNa-21"1).
Thus we have ¢ = —(a — A)(a — A7})b! since b # 0. Therefore

A= a b
T\ —(e=Na- At —a+ A+ 2T
Suppose b > 0. Let
p_ (Vb1 0
= 0 VB )

then
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Similary if b < 0, then there exists

such that
Q4@ = : N
(@a=N(a—A"1) —a+r+271 )
QBQ—1= ( /Ja(;l 0 ) = B,

Since R = CB"1A"1BA = I, we can get C = A"'B~1AB. Therefore, the genera-
tors A, B and C of 7 are expressed by

(2:4) A=<(a—/\)((«zz—)\“1) —a+—:\1+)\‘1>’ Bz(”: 2)

((@=Na=-2ADHE2-1)+1  —(—a+ A+ 22 -1)
es o= XN e ey )

or

= a 1 _ gl 0
(29 A—(—(a—/\)(a—k“l) —a+>\+/\‘1)’ B—( 0 u),
e o= (N T G )
. a(a—)\)(a—)\"l)(l_u—2) (a—)\)(a—)\‘l)(uz—l)—}—l
up to SL(2,R)-conjugation. As a result, the trace of C is the same in both cases;
that is

(2.8) tr(C) = (a — N(a= A (W? -2+ u2) +2.

Suppose tr(C) = v + v~ with v? > 1. After some simple computations, we have
A+ 271 :l:\/ -A"1)Z2 4 48 _ v+rv1-2

(29) where ﬂ = m .

Therefore {), u, v} is a coordinate for the Teichmiiller space T(2(1,1)).

Corollary 2.9. Suppose z., z, are the repelling and attracting fized points of the
hyperbolic matriz A in (2.4) with A2 > 1. Then —0o0 < 2z, < 0 < 2, < 00 if and
only if 0 < Al <a< A

Proof. Let A;; stand for the (4, j)-th entry of the matrix A. Since A;2 < 0, by
Corollary 2.5, we have the relations A < 0, A;; > 0, and A2 > 0. I claim that
A > 1. Suppose A < —1. Then A < A~! < 0. Since Ag; = (a — A)(a — A71) < 0,
it derives A < a < A™! < 0. It contradicts for A;; = a > 0. Therefore A > 1 and
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0 < A ! <a< A Conversely, if 0 < A™! < a < A, then we can easily show that
Ay < 0, A11 >0, and Ay > 0. O

Thus above matrix A in (2.4) has positive valued trace A + A 7!,

Corollary 2.10. Suppose z,, z, are the repelling and attracting fized points of the
hyperbolic matriz A in (2.6) with A2 > 1. Then —00 < 2, < 0 < 2. < 00 if and only
fai<a< A l<o.

Proof. 1t can be proved in the same way as in the Corollary 2.9. a

Since A, B, C are hyperbolic elements and the holonomy group is discrete, the
locations of the principal lines of A,B,C are one of follows. For more details (see
Keen [6] or Goldman [4]).

C
A /‘\
0 Zr W, W,

B

B

Za

C
/\ A
Wy Wq 2 0

Figure 5. The locations of the principal lines of A, B, C

Zq

Relation between two diagrams is

a b a b
A=(cd)<==>A_<_c d>'
Thus it is enough to show that the case 2z, < 0 < 2, < W < Wy

Theorem 2.11. Suppose z,, Wr, zq, Wq are the repelling and attracting fized points
of the hyperbolic matrices A in (2.4) and C in (2.5) respectively and p> > 1. If we
have —00 < 25 < 0 < zp < 00 and 0 < wg < wy < 00, then 0 < A~} < a < A, and
(a—N(a-A"Hp?-2+p72) < -4
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Proof. Let Cy; stand for the (i, j)-th entry of the matrix C. Since —00 < 2, <0 <

2z, < 00, we have 0 < A~} < a < A, From the assumption u? > 1, we get

and

Cro=—(—a+A+ A2 -1) <0

Co = —afa - N{e~A" D1 =% >0

By Theorem 2.3, the equivalent conditions for 0 < w, < w, < o0 are (5;C1s <
0, {C11 + C22)C2 < 0 and (Cy; — Ca2)C; > 0. Clearly Ci2Cy < 0. And (Cyp —
C22)Ca > 0 because of Cy; > 0 and

(Cuu—Ca) = (a=Aa-A")(p? - p?) >0

Since Co; > 0, (C11 + C22)Co1 < 0 if and only if tr(C) = Cy1 + Cag < 0. Because
we know C is hyperbolic matrix with tr(C) < 0, tr(C) must be less than -2. Thus

(2.10) te(C) =(a~MNa—- AN~ 2+p"2) +2< 2.

It completes the proof.

Now we consider the position of fixed points of the matrix A and C.

Theorem 2.12. Suppose that A is the hyperbolic matriz in (2.4} with —~00 < 24 <
0 < 2z, < 0co. Then the fized points of A are

(2.11)

Rq =

1
a— A~

P and z. =

Proof. By the Equation (2.3),

Rgy Rr

(20— A~ A £ /(A+ A1) -4

2(a — A)(a — 171
(26— A =27 £ A - 27

2(a — A)a~ A"Y)
(2a~ A=A (A-A"1

2(a — X){a ~ A1)
2(a — A1) 2(a— A)

2a-Na-»21 T 2a=N@-rh
1

1
or

(a—A) {a— A1)

Since (a—A) < 0 and (a—A™1) > 0, the attracting fixed point z, of A is 1/(a— A)

and the repelling fixed point z, of A is 1/{a — A71).

B
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Theorem 2.13. Suppose that C is the hyperbolic matriz in (2.5) with 0 < w, <
wy < 00. Then the fized points of C are

E-vD _E+VD
= =

and w, T

where E= (A —a){a— A"t — 1), F = 2a(A ~a)(a = A" (p? - 1), and D =
[(a = A)(a = A71)(? = 1)2 + 207" — 4.

Wy =

Proof. By the Equation (2.3), the fixed points w,, w, of C are

(Ci1 — C22) £ /(Cr1 + Ca2)2 — 4
2C2
[(a=M(a =AM (u? - p?)] £ /(Ci1 + Cn)? - 4
~2a(a — A)(a = A"1)(1 ~ p~2)
[(a=Ae =211 - w)] £ V[(Ci1 + Co2)p?]? — 4p*
~2a(a - A)(a— A1) {u? - 1)
[(A=a)a=AH(p* -} VD
2a(A - a)(a - A" {(p? - 1)

where
D = [(Cy + Co)p®}? — 4
[(a—Aa~ A1) (u* +1—20%) + 207 — 4p®
= [(a=Ne- 2" - 1%+ 27 - 4.
Therefore the facts 0 < A™! < a < A and u? > 1 prove the theorem. 0

Theorem 2.14. Suppose the matrices A, B,C in (2.4) and (2.5) satisfy 0 < A1 <
a<i p2>1and{a—-N(a—A1p?-2+p"?) < ~4. Then {4,B,C} form
generators of the fundamental group 7 of a punctured torus L(1, 1).

Proof. We should show that —00 < 2z, < 0 < 2 < W, < Wy < 00. By Theorem
2.11, it is enough to show that z, < w,. Since {(a — A™1) > 0, we have to show that
20N —a){p® ~1) < E - VD; that is
VD < E-2a(h—a)(u?-1)
= (A-a)W’ =1 [la=~ A" +1) - 2]
= Q- D[ A - 1) - 227,



MATRIX PRESENTATIONS OF A PUNCTURED TORUS 87

Since (a — A" ~1) > (a— A D2 +p2-2) >4 —a)"! > 2271, the
right-hand-side of the inequality is positive. Hence we will show
D = [(a-Na- A"~ 1)*+242) — ap*
< (A=aP(@ -1 [e- A -1 -2
After some calculations we can get
(@ -2 < A0 —a)a=- 2D - 1)+ 20 - a).
This is equivalent to [(a — A™!)u? + (A —a)] (A"'a) > 0. The conditions 0 <
Al < a < \and p? > 1 prove the theorem. a

Theorem 2.15. Suppose the matrices A, B, C in (2.6) and (2.7) satisfy A < a <
A1 <0,u?>1and (a—MN(a—- A1) (u? -2+ p2) < —4. Then {A,B,C} form
generators of the fundamental group m of a pair of pants.

Proof. This can be proved by the same way in the Theorem 2.14. |

Finally we consider the relations of traces of A, B and C in SL(2,R). The
matrices A and B can be endowed with positive or negative traces. For each case,
we have (¢ — A)(a — A7) < 0 and p? > 1. Thus the trace of matrix C is always
negative. . e.,

(2.12) tr(C)=(a—N@a- AW -2+pu?) +2< -2
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