MATRIX PRESENTATIONS OF THE TEICHMÜLLER SPACE OF A PUNCTURED TORUS

HONG CHAN KIM

ABSTRACT. A punctured torus $\Sigma(1,1)$ is a building block of oriented surfaces. The goal of this paper is to formulate the matrix presentations of elements of the Teichmüller space of a punctured torus. Let C be a matrix presentation of the boundary component of $\Sigma(1,1)$. In the level of the matrix group $\mathbf{SL}(2,\mathbb{R})$, we shall show that the trace of C is always negative.

INTRODUCTION

The $(\mathbf{PSL}(2,\mathbb{R}),\mathbb{H}^2)$ -structures on a connected smooth surface M are called the *hyperbolic* structures on M. If $\chi(M) < 0$, then the equivalence classes of hyperbolic structures on M form a deformation space $\mathfrak{T}(M)$ called the *Teichmüller space*.

Let $\pi = \pi_1(M)$ be the fundamental group of M. Given a hyperbolic structure on M, the action of π by deck transformation on the universal covering space \tilde{M} of M determines a homomorphism $\pi \to \mathbf{PSL}(2,\mathbb{R})$ called the *holonomy homomorphism* and it is well-defined up to conjugation in $\mathbf{PSL}(2,\mathbb{R})$. Thus the Teichmüller space $\mathfrak{T}(M)$ has a natural topology which identified with an open subset of the orbit space $\mathrm{Hom}(\pi,\mathbf{PSL}(2,\mathbb{R}))/\mathbf{PSL}(2,\mathbb{R})$. Since holonomy homomorphisms $\pi \to \mathbf{PSL}(2,\mathbb{R})$ are isomorphic to their images, the generators of π can be presented by the conjugacy classes of matrices in $\mathbf{PSL}(2,\mathbb{R})$.

Let $M = \Sigma(g,n)$ be a compact connected oriented surface with g-genus and n-boundary components. Then M can be decomposed as a disjoint union of g punctured tori $\Sigma(1,1)$ and 2g-2+n pairs of pants $\Sigma(0,3)$. Thus a punctured torus and a pair of pants $\Sigma(0,3)$ are building blocks of an oriented surface M. The matrix

Received by the editors January 8, 2004 and, in revised form, February 5, 2004.

²⁰⁰⁰ Mathematics Subject Classification. 32G15, 57M50.

Key words and phrases. punctured torus, hyperbolic structure, Teichmüller space, holonomy homomorphism, discrete group.

The author gratefully acknowledges the support from a Korea University Grant.

presentations of a pair of pants $\Sigma(0,3)$ are classified in the preceding paper Kim [7]. The purpose of this paper is to formulate the matrix presentations of elements of the Teichmüller space of a punctured torus $\Sigma(1,1)$.

In Section 1, we recall some preliminary definitions and describe the relation between the deformation space $\mathfrak{D}(M)$ of (G,X)-structures on a smooth manifold M and the orbit space $\mathrm{Hom}(\pi,G)/G$. In Section 2, we define the hyperbolic elements of $\mathrm{SL}(2,\mathbb{R})$ and $\mathrm{PSL}(2,\mathbb{R})$ and classify the locations of fixed points and principal lines of hyperbolic elements. In Section 3, we calculate the matrix presentations of elements of the Teichmüller space $\mathfrak{T}(\Sigma(1,1))$. Let C be a matrix presentation of the boundary component of $\Sigma(1,1)$. In the level of the matrix group $\mathrm{SL}(2,\mathbb{R})$, we shall show that the trace of C is always negative.

1. (G,X)-STRUCTURES ON A SMOOTH MANIFOLD M

1.1. An action of a connected Lie group G on a smooth manifold X is called strongly effective if $g_1, g_2 \in G$ agree on a nonempty open set of X, then $g_1 = g_2$. Let Ω be an open subset of X. A map $\phi: \Omega \to X$ is called locally-(G, X) if for each component $W \subset \Omega$, there exists a (G, X)-transformation $g \in G$ such that $\phi|_W = g|_W$. Since G acts strongly effectively on X, above element g is unique for each component. Clearly a locally-(G, X) map is a local diffeomorphism.

Let M be a connected smooth n-manifold. A (G, X)-structure on M is a maximal collection of coordinate charts $\{(U_{\alpha}, \psi_{\alpha})\}$ such that

- (1) $\{U_{\alpha}\}$ is an open covering of M.
- (2) For each α , $\psi_{\alpha}: U_{\alpha} \to X$ is a diffeomorphism onto its image.
- (3) The change of coordinates is locally-(G, X); If $(U_{\alpha}, \psi_{\alpha})$ and $(U_{\beta}, \psi_{\beta})$ are two coordinate charts with $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then the transition function $\psi_{\beta} \circ \psi_{\alpha}^{-1}$: $\psi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \psi_{\beta}(U_{\alpha} \cap U_{\beta})$ is locally-(G, X).

Now we give an example of a (G, X)-structure.

Example 1.1. Let $\mathbb{H}^2 = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ be the upper half complex plane. Then $SL(2,\mathbb{R})$ acts on \mathbb{H}^2 by

(1.1)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d} .$$

Since we have $A \cdot z = (-A) \cdot z$ for any $A \in \mathbf{SL}(2, \mathbb{R})$ and $z \in \mathbb{H}^2$, the Lie group $\mathbf{PSL}(2, \mathbb{R}) = \mathbf{SL}(2, \mathbb{R}) / \pm I$ acts strongly effectively on \mathbb{H}^2 .

Definition 1.2. A (PSL $(2,\mathbb{R})$, \mathbb{H}^2)-structure on a smooth surface M is called a hyperbolic structure on M.

1.2. A manifold M with a (G, X)-structure is called a (G, X)-manifold. Let N be a (G, X)-manifold. If $f: M \to N$ is a local diffeomorphism of smooth manifolds, then we can give the induced (G, X)-structure on M via f. In particular every covering space of a (G, X)-manifold has the canonically induced (G, X)-structure.

Let M and N be (G,X)-manifolds and $f:M\to N$ a smooth map. Then f is called a (G,X)-map if for each coordinate chart (U,ψ_U) on M and (V,ψ_V) on N, the composition $\psi_V\circ f\circ \psi_U^{-1}:\psi_U(f^{-1}(V)\cap U)\to \psi_V(f(U)\cap V)$ is locally-(G,X).

The following *Development Theorem* is the fundamental fact about (G, X)-structures. For more details (see Thurston [8]).

Theorem 1.3. Let $p: \tilde{M} \to M$ denote a universal covering map of a (G, X)-manifold M, and π the corresponding group of covering transformations.

(1) There exist a (G, X)-map $\operatorname{\mathbf{dev}}: \tilde{M} \to X$ and homomorphism $h: \pi \to G$ such that for each $\gamma \in \pi$ the following diagram commutes:

$$\tilde{M} \xrightarrow{\operatorname{dev}} X$$

$$\uparrow \downarrow \qquad \qquad \downarrow h(\gamma)$$

$$\tilde{M} \xrightarrow{\operatorname{dev}} X$$

(2) Suppose (\mathbf{dev}', h') is another pair satisfying above conditions. Then there exists a(G, X)-transformation $g \in G$ such that $\mathbf{dev}' = g \circ \mathbf{dev}$ and $h' = \iota_g \circ h$ where $\iota_g : G \to G$ denotes the inner automorphism defined by g; that is,

$$h'(\gamma) = (\iota_g \circ h)(\gamma) = g \circ h(\gamma) \circ g^{-1} :$$

$$\tilde{M} \xrightarrow{\text{dev}} X \xrightarrow{g} X$$

$$\gamma \downarrow \qquad \qquad \downarrow h(\gamma) \qquad \downarrow h'(\gamma)$$

$$\tilde{M} \xrightarrow{\text{dev}} X \xrightarrow{g} X$$

The (G,X)-map $\operatorname{\mathbf{dev}}: \tilde{M} \to X$ called the developing map and the homomorphism $h: \pi \to G$ is called the holonomy homomorphism. The image $\Gamma = h(\pi) \subset G$ is called the holonomy group and the image $\Omega = \operatorname{\mathbf{dev}}(\tilde{M}) \subset X$ is called the developing image. By Theorem 1.3, the developing pair $(\operatorname{\mathbf{dev}}, h)$ is unique up to the G-action by composition and conjugation respectively.

Consider a pair (f,N) where N is a (G,X)-manifold and $f:M\to N$ is a diffeomorphism. Then M admits the induced (G,X)-structure via f. The set of all such pairs (f,N) is denoted by $\mathcal{A}(M)$. Then $\mathcal{A}(M)$ is the space of all (G,X)-structures on M. We say two pairs (f,N) and (f',N') in $\mathcal{A}(M)$ are equivalent if there exists a (G,X)-diffeomorphism $g:N\to N'$ such that $g\circ f$ is isotopic to f'. The set of equivalence classes $\mathcal{A}(M)/\sim$ will be denoted by $\mathfrak{D}(M)$ and called the deformation space of (G,X)-structures on M.

Definition 1.4. Let M be a connected smooth 2-manifold. The deformation space of the hyperbolic structures on M is called the *Teichmüller space* and denoted by $\mathfrak{T}(M)$.

1.3. The deformation space $\mathfrak{D}(M)$ is closely related to $\operatorname{Hom}(\pi,G)/G$ the orbit space of homomorphisms $\phi:\pi\to G$. Suppose $M=\Sigma(g,n)$ is a compact oriented smooth surface with g-genus, n-boundary components and $\chi(M)=2-2g-n<0$. Then π admits 2g+n generators $A_1,B_1,\ldots,A_g,B_g,C_1,\ldots,C_n$ with a single relation

$$R = A_1 B_1 A_1^{-1} B_1^{-1} \cdots A_g B_g A_g^{-1} B_g^{-1} C_1 \cdots C_n = I.$$

From the correspondence of the homomorphism $\phi: \pi \to G$ to the image of generators, $\operatorname{Hom}(\pi,G)$ may be identified with the collection of all (2g+n)-tuples $(A_1,B_1,\ldots,A_g,B_g,C_1,\ldots,C_n)\subset G^{2g+n}$ elements of G satisfying

$$R(A_1, B_1, \ldots, A_g, B_g, C_1, \ldots, C_n) = I.$$

Since $R: G^{2g+n} \to G$ is a polynomial equation and

(1.2)
$$\operatorname{Hom}(\pi, G) = R^{-1}(I) \subset G^{2g+n},$$

if G is an algebraic Lie group, then $\text{Hom}(\pi, G)$ is an algebraic variety.

The group G acts on $\operatorname{Hom}(\pi, G)$ by conjugation as follows; For $g \in G$ and $\phi \in \operatorname{Hom}(\pi, G)$, the action $g \cdot \phi$ is defined by

$$(g \cdot \phi)(\gamma) = g \circ \phi(\gamma) \circ g^{-1}$$

where $\gamma \in \pi$. Taking the holonomy homomorphism of a (G, X)-structure defines a map

$$\mathbf{hol}: \mathfrak{D}(M) \longrightarrow \mathrm{Hom}(\pi,G)/G$$

which is a local diffeomorphism. See Goldman [2] and Johnson & Millson [5] for details. For the hyperbolic structures on M, the Teichmüller space $\mathfrak{T}(M)$ embeds into $\operatorname{Hom}(\pi,\operatorname{\mathbf{PSL}}(2,\mathbb{R}))/\operatorname{\mathbf{PSL}}(2,\mathbb{R})$. (cf. Goldman [3])

Theorem 1.5. Let M be a compact oriented surface with $\chi(M) = 2 - 2g - n < 0$. Then $hol: \mathfrak{T}(M) \to \operatorname{Hom}(\pi, \mathbf{PSL}(2, \mathbb{R})) / \mathbf{PSL}(2, \mathbb{R})$ is an embedding onto a Hausdorff real analytic manifold of dimension 6g - 6 + 3n.

Therefore the Teichmüller space $\mathfrak{T}(M)$ is homeomorphic to $\mathbb{R}^{6g-6+3n}$ and an element of $\mathfrak{T}(M)$ will be identified with a conjugacy class of $\mathrm{Hom}(\pi,\mathbf{PSL}(2,\mathbb{R}))$. In the next section, we shall explicitly formulate the algebraic presentation of elements of $\mathfrak{T}(M)$ for a punctured torus $M = \Sigma(1,1)$.

2. Matrix presentations of a punctured torus

2.1. An element A of $\mathbf{SL}(2,\mathbb{R})$ is said to be *hyperbolic* if A has two distinct real eigenvalues. Since the characteristic polynomial of A is $f(\lambda) = \lambda^2 - t\lambda + 1$ where $t = \operatorname{tr}(A)$, A is hyperbolic if and only if $\operatorname{tr}(A)^2 > 4$. Thus a hyperbolic element A in $\mathbf{SL}(2,\mathbb{R})$ can be expressed by the diagonal matrix

$$\begin{pmatrix}
\alpha^{-1} & 0 \\
0 & \alpha
\end{pmatrix}$$

via an $SL(2,\mathbb{R})$ -conjugation where $\alpha^2 > 1$.

An element A of $\mathbf{PSL}(2,\mathbb{R})$ is said to be *hyperbolic* if A has two distinct fixed points on $\partial \mathbb{H}^2$. Since the absolute value of trace is still defined, A is hyperbolic if and only if $|\mathrm{tr}(A)| > 2$. The following theorem is from Beardon's book [1]. It was certainly known to Fenchel, Nielsen and probably earlier.

Theorem 2.1. Suppose that M is a compact connected oriented hyperbolic surface. Then every nontrivial element of the holonomy group $\Gamma \subset \mathbf{PSL}(2,\mathbb{R})$ is hyperbolic.

Let $M = \Sigma(g, n)$ be a compact connected oriented surface with g-genus and n-boundary components. If $\chi(M) = 2 - 2g - n < 0$, then there exist 2g - 3 + n nontrivial homotopically-distinct disjoint simply-closed curves on M such that they decompose M as the disjoint union of g punctured tori $\Sigma(1,1)$ and g-2+n pairs of pants $\Sigma(0,3)$. Thus the punctured torus $\Sigma(1,1)$ and a pair of pants $\Sigma(0,3)$ are building blocks of an oriented surface M. For more detail (see Wolpert [9]).

The matrix presentations of a pair of pants $\Sigma(0,3)$ are classified in the preceding paper Kim [7]. Thus the goal of this section is to find expressions of the elements of the Teichmüller space $\mathfrak{T}(\Sigma(1,1))$ of a punctured torus. Since $\mathfrak{T}(\Sigma(1,1))$ embeds into $\operatorname{Hom}(\pi,\mathbf{PSL}(2,\mathbb{R}))/\mathbf{PSL}(2,\mathbb{R})$, we should calculate the matrix presentations of the conjugacy classes of $\operatorname{Hom}(\pi,\mathbf{PSL}(2,\mathbb{R}))$.

2.2. First we consider the positions of fixed points and principal lines of hyperbolic elements in $\mathbf{SL}(2,\mathbb{R})$. The *principal line* of a hyperbolic element $A \in \mathbf{SL}(2,\mathbb{R})$ is the A-invariant unique geodesic in \mathbb{H} and it is the line joining two fixed points of A. Since the principal line has a distinct direction, we call one of fixed point of A is called *repelling* fixed point z_r and the other is called *attracting* fixed point z_a . For more easy understanding (see Beardon [1]) or Figure 1.

Proposition 2.2. Suppose

$$A = \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \ \ and \ \ B = \left(egin{array}{cc} a & -b \\ -c & d \end{array}
ight)$$

are hyperbolic elements of $SL(2,\mathbb{R})$. If z is a fixed point of A, then -z is a fixed point of B.

Proof. Let

$$P = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

Then we can get $PAP^{-1} = B$. Let z be a fixed point of A and w = Pz. Since

$$Bw = (PAP^{-1})(Pz) = P(Az) = Pz = w,$$

w = Pz is a fixed point of B. Therefore if z is a fixed point of A, then the point

$$w = Pz = \frac{1 \cdot z + 0}{0 \cdot z - 1} = -z$$

is a fixed point of B.

Figure 1. The fixed points of the matrices A and B

Thus the principal lines of A and B are symmetric with respect to the imaginary axis.

Let

$$A=\left(egin{array}{cc} a & b \ c & d \end{array}
ight)\in \mathbf{SL}(2,\mathbb{R})$$

be a hyperbolic element. We now consider the location of the principal line of A and the relations of entries of A.

Theorem 2.3. Suppose $A \in \mathbf{SL}(2,\mathbb{R})$ represents a hyperbolic transformation of \mathbb{H}^2 and z_r, z_a are the repelling and attracting fixed points of A. Then

- (1) $0 < z_a + z_r < \infty$ if and only if (a d) c > 0.
- (2) $z_a \cdot z_r > 0$ if and only if bc < 0.
- (3) $z_a < z_r$ if and only if (a+d) c < 0.

Figure 2. The principal line with $0 < z_a < z_r < \infty$

Proof. Since z_a and z_r are the fixed points of the hyperbolic transformation $A(z) = \frac{az+b}{cz+d}$, they are the roots of the equation

(2.2)
$$cz^{2} + (d-a)z - b = 0.$$

Suppose $0 < z_a + z_r < \infty$ or $z_a \cdot z_r > 0$. Then the fixed points of A are neither infinity nor zero. First we claim that $c \neq 0$. If c = 0, then $1 = \det(A) = ad$. Thus $d = a^{-1}$ and $A(z) = a^2z + ab$. This yields that ∞ is a fixed point of A(z) since $a \neq 0$. It contradicts the assumption. Since $z_a + z_r = \frac{a-d}{c}$ and $z_a \cdot z_r = \frac{-b}{c}$, it proves $0 < z_a + z_r < \infty$ if and only if (a - d)c > 0 and $z_a \cdot z_r > 0$ if and only if bc < 0.

Since we have $c \neq 0$, the roots z_a , z_r of the Equation (2.2) can be expressed by

(2.3)
$$z_a, z_r = \frac{(a-d) \pm \sqrt{(a+d)^2 - 4}}{2c}.$$

Suppose that the attracting fixed point z_a is smaller than the repelling fixed point z_r ; i. e., $z_a < z_r$. Let w be the mid point of the fixed points z_a and z_r ; i. e., $w = (z_a + z_r)/2 = (a - d)/(2c)$. Then the condition $z_a < z_r$ is equivalent to

A(w) < w. From the computation

$$A(w) - w = \frac{a(\frac{a-d}{2c}) + b}{c(\frac{a-d}{2c}) + d} - \left(\frac{a-d}{2c}\right)$$
$$= \frac{a(a-d) + 2bc}{(a+d)c} - \left(\frac{a-d}{2c}\right) = \frac{(a+d)^2 - 4}{2(a+d)c},$$

and the fact that $(a+d)^2 > 4$, it proves $z_a < z_r$ if and only (a+d) c < 0. This completes the proof.

Theorem 2.4. Let $A \in \mathbf{SL}(2,\mathbb{R})$ represent a hyperbolic transformation of \mathbb{H}^2 and z_r, z_a the repelling and attracting fixed points of A. Then $-\infty < z_a < 0 < z_r < \infty$ if and only if bc > 0, ac < 0 and bd < 0.

Figure 3. The principal line with $-\infty < z_a < 0 < z_r < \infty$

Proof. From the Theorem 2.3, we can show that $z_a \cdot z_r < 0$ if and only if bc > 0. Suppose $-\infty < z_a < 0 < z_r < \infty$. The images of the origin and infinity under A should be negative as in the Figure 3. That means A(0) = b/d < 0 and $A(\infty) = a/c < 0$. Thus we have bd < 0 and ac < 0. Conversely, the relations bc > 0 and bd < 0 derive cd < 0. Thus we get (a+d)c < 0, equivalently $z_a < z_r$. The fact bc < 0 implies $z_a \cdot z_r < 0$. Since all entries of A are non-zero, we can conclude $-\infty < z_a < 0 < z_r < \infty$.

Corollary 2.5. Let $A \in \mathbf{SL}(2,\mathbb{R})$ represent a hyperbolic transformation of \mathbb{H}^2 .

- (1) Suppose b > 0. Then $-\infty < z_a < 0 < z_r < \infty$ if and only if a < 0, c > 0, d < 0.
- (2) Suppose b < 0. Then $-\infty < z_a < 0 < z_r < \infty$ if and only if a > 0, c < 0, d > 0.

Proof. This follows from the result of the Theorem 2.4.

Theorem 2.6. Suppose $C \in \mathbf{SL}(2,\mathbb{R})$ is representing a hyperbolic transformation of \mathbb{H}^2 with the repelling and attracting fixed points w_r, w_a . Suppose $0 < w_a < w_r < \infty$, then (a-d)c > 0, (a+d)c < 0, bc < 0, $a^2 < d^2$ and bd > 0.

Proof. Since $0 < w_a + w_r < \infty$, $w_a \cdot w_r > 0$ and $w_a < w_r$, from Theorem 2.3, we have the relations (a-d)c > 0, bc < 0 and (a+d)c < 0. Thus $(a-d)(a+d)c^2 = (a^2-d^2)c^2 < 0$ implies $a^2 < d^2$. Since $w_a < w_r$, the image of the origin under C should be positive as in the Figure 2. That means C(0) = b/d > 0. Thus we have bd > 0. This also implies $b \neq 0$ and $d \neq 0$.

Remark 2.7. The image of infinity of C is just less than w_a . Thus it is possible that $C(\infty)$ has positive, zero, or negative signs.

Corollary 2.8. Suppose $C \in \mathbf{SL}(2,\mathbb{R})$ is representing a hyperbolic transformation of \mathbb{H}^2 .

- (1) Suppose that b > 0. Then $0 < w_a < w_r < \infty$ if and only if c < 0, d > 0, |a| < d.
- (2) Suppose that b < 0. Then $0 < w_a < w_r < \infty$ if and only if c > 0, d < 0 |a| < (-d).

Proof. Suppose $0 < w_a < w_r < \infty$ and b > 0. Since we have the relations bc < 0, bd > 0 and $a^2 < d^2$, the condition b > 0 yields that c < 0, d > 0, and |a| < |d| = d. Conversely, the condition |a| < d derives (a-d) < 0, and (a+d) > 0. Since c < 0 we get (a-d)c > 0 and (a+d)c < 0. Since bc < 0, this induces $0 < w_a < w_r < \infty$. We can similarly prove for the case b < 0.

2.3. Recall that a punctured torus $M = \Sigma(1,1)$ is a torus with a hole. Suppose M is equipped with a hyperbolic structure. Since the holonomy homomorphism is isomorphic to its image, the fundamental group π of M will be identified with

$$\pi = \langle A, B, C \in \mathbf{PSL}(2, \mathbb{R}) \mid R = CB^{-1}A^{-1}BA = I \rangle.$$

Let $A, B, C \in \mathbf{PSL}(2,\mathbb{R})$ represent elements of the fundamental group of M as in Figure 4. We will find the expression of the generators A, B and C of π in terms of $\mathbf{SL}(2,\mathbb{R})$ instead of $\mathbf{PSL}(2,\mathbb{R})$ because $\mathbf{SL}(2,\mathbb{R})$ is easier to compute than $\mathbf{PSL}(2,\mathbb{R})$. Since the matrices $A, B, C \in \mathbf{SL}(2,\mathbb{R})$ are hyperbolic and represented up to conjugate, without loss of generality, we can assume

$$B = \left(\begin{array}{cc} \mu^{-1} & 0 \\ 0 & \mu \end{array}\right)$$

Figure 4. A punctured torus $M = \Sigma(1,1)$

with $\mu^2 > 1$. Since we have

$$B(z) = \frac{\mu^{-1} \cdot z + 0}{0 \cdot z + \mu} = \frac{z}{\mu^2},$$

 ∞ is the repelling fixed point and 0 is the attracting fixed point of B. By the discreteness of holonomy group, $A(0) \neq 0$. Let

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

Then $b \neq 0$. If b = 0, then

$$A(0) = \frac{a \cdot 0 + b}{c \cdot 0 + d} = 0,$$

contradicting for $A(0) \neq 0$. Suppose $\operatorname{tr}(A) = \lambda + \lambda^{-1}$ where $\lambda^2 > 1$. Since $a + d = \operatorname{tr}(A) = \lambda + \lambda^{-1}$, we have $d = -a + \lambda + \lambda^{-1}$. Since $\det(A) = ad - bc = 1$, we obtain

$$bc = ad - 1 = a(-a + \lambda + \lambda^{-1}) - 1 = -(a - \lambda)(a - \lambda^{-1}).$$

Thus we have $c = -(a - \lambda)(a - \lambda^{-1})b^{-1}$ since $b \neq 0$. Therefore

$$A = \begin{pmatrix} a & b \\ -(a-\lambda)(a-\lambda^{-1})b^{-1} & -a+\lambda+\lambda^{-1} \end{pmatrix}.$$

Suppose b > 0. Let

$$P = \left(\begin{array}{cc} \sqrt{b^{-1}} & 0\\ 0 & \sqrt{b} \end{array} \right),$$

then

$$\begin{split} PAP^{-1} &= \left(\begin{array}{cc} a & 1 \\ -(a-\lambda)(a-\lambda^{-1}) & -a+\lambda+\lambda^{-1} \end{array} \right), \\ PBP^{-1} &= \left(\begin{array}{cc} \mu^{-1} & 0 \\ 0 & \mu \end{array} \right) = B. \end{split}$$

Similary if b < 0, then there exists

$$Q = \left(\begin{array}{cc} \sqrt{-b^{-1}} & 0 \\ 0 & \sqrt{-b} \end{array} \right)$$

such that

$$\begin{split} QAQ^{-1} &= \left(\begin{array}{cc} a & -1 \\ (a-\lambda)(a-\lambda^{-1}) & -a+\lambda+\lambda^{-1} \end{array}\right), \\ QBQ^{-1} &= \left(\begin{array}{cc} \mu^{-1} & 0 \\ 0 & \mu \end{array}\right) = B. \end{split}$$

Since $R = CB^{-1}A^{-1}BA = I$, we can get $C = A^{-1}B^{-1}AB$. Therefore, the generators A, B and C of π are expressed by

$$(2.4) A = \begin{pmatrix} a & -1 \\ (a-\lambda)(a-\lambda^{-1}) & -a+\lambda+\lambda^{-1} \end{pmatrix}, B = \begin{pmatrix} \mu^{-1} & 0 \\ 0 & \mu \end{pmatrix},$$

(2.5)
$$C = \begin{pmatrix} (a-\lambda)(a-\lambda^{-1})(\mu^{-2}-1) + 1 & -(-a+\lambda+\lambda^{-1})(\mu^{2}-1) \\ -a(a-\lambda)(a-\lambda^{-1})(1-\mu^{-2}) & (a-\lambda)(a-\lambda^{-1})(\mu^{2}-1) + 1 \end{pmatrix}$$

or

$$(2.6) A = \begin{pmatrix} a & 1 \\ -(a-\lambda)(a-\lambda^{-1}) & -a+\lambda+\lambda^{-1} \end{pmatrix}, B = \begin{pmatrix} \mu^{-1} & 0 \\ 0 & \mu \end{pmatrix},$$

(2.7)
$$C = \begin{pmatrix} (a-\lambda)(a-\lambda^{-1})(\mu^{-2}-1) + 1 & (-a+\lambda+\lambda^{-1})(\mu^{2}-1) \\ a(a-\lambda)(a-\lambda^{-1})(1-\mu^{-2}) & (a-\lambda)(a-\lambda^{-1})(\mu^{2}-1) + 1 \end{pmatrix}$$

up to $\mathbf{SL}(2,\mathbb{R})$ -conjugation. As a result, the trace of C is the same in both cases; that is

(2.8)
$$\operatorname{tr}(C) = (a - \lambda)(a - \lambda^{-1})(\mu^2 - 2 + \mu^{-2}) + 2.$$

Suppose $tr(C) = \nu + \nu^{-1}$ with $\nu^2 > 1$. After some simple computations, we have

(2.9)
$$a = \frac{(\lambda + \lambda^{-1}) \pm \sqrt{(\lambda - \lambda^{-1})^2 + 4\beta}}{2} \text{ where } \beta = \frac{\nu + \nu^{-1} - 2}{\mu^2 + \mu^{-2} - 2}.$$

Therefore $\{\lambda, \mu, \nu\}$ is a coordinate for the Teichmüller space $\mathfrak{T}(\Sigma(1,1))$.

Corollary 2.9. Suppose z_r , z_a are the repelling and attracting fixed points of the hyperbolic matrix A in (2.4) with $\lambda^2 > 1$. Then $-\infty < z_a < 0 < z_r < \infty$ if and only if $0 < \lambda^{-1} < a < \lambda$.

Proof. Let A_{ij} stand for the (i,j)-th entry of the matrix A. Since $A_{12} < 0$, by Corollary 2.5, we have the relations $A_{21} < 0$, $A_{11} > 0$, and $A_{22} > 0$. I claim that $\lambda > 1$. Suppose $\lambda < -1$. Then $\lambda < \lambda^{-1} < 0$. Since $A_{21} = (a - \lambda)(a - \lambda^{-1}) < 0$, it derives $\lambda < a < \lambda^{-1} < 0$. It contradicts for $A_{11} = a > 0$. Therefore $\lambda > 1$ and

 $0 < \lambda^{-1} < a < \lambda$. Conversely, if $0 < \lambda^{-1} < a < \lambda$, then we can easily show that $A_{21} < 0, A_{11} > 0$, and $A_{22} > 0$.

Thus above matrix A in (2.4) has positive valued trace $\lambda + \lambda^{-1}$.

Corollary 2.10. Suppose z_r , z_a are the repelling and attracting fixed points of the hyperbolic matrix A in (2.6) with $\lambda^2 > 1$. Then $-\infty < z_a < 0 < z_r < \infty$ if and only if $\lambda < a < \lambda^{-1} < 0$.

Proof. It can be proved in the same way as in the Corollary 2.9.

Since A, B, C are hyperbolic elements and the holonomy group is discrete, the locations of the principal lines of A,B,C are one of follows. For more details (see Keen [6] or Goldman [4]).

Figure 5. The locations of the principal lines of A, B, C

Relation between two diagrams is

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \quad \Longleftrightarrow \quad A = \left(\begin{array}{cc} a & -b \\ -c & d \end{array} \right).$$

Thus it is enough to show that the case $z_a < 0 < z_r < w_a < w_r$.

Theorem 2.11. Suppose z_r , w_r , z_a , w_a are the repelling and attracting fixed points of the hyperbolic matrices A in (2.4) and C in (2.5) respectively and $\mu^2 > 1$. If we have $-\infty < z_a < 0 < z_r < \infty$ and $0 < w_a < w_r < \infty$, then $0 < \lambda^{-1} < a < \lambda$, and $(a - \lambda)(a - \lambda^{-1})(\mu^2 - 2 + \mu^{-2}) < -4$.

Proof. Let C_{ij} stand for the (i,j)-th entry of the matrix C. Since $-\infty < z_a < 0 < z_r < \infty$, we have $0 < \lambda^{-1} < a < \lambda$. From the assumption $\mu^2 > 1$, we get

$$C_{12} = -(-a + \lambda + \lambda^{-1})(\mu^2 - 1) < 0$$

and

$$C_{21} = -a(a-\lambda)(a-\lambda^{-1})(1-\mu^{-2}) > 0.$$

By Theorem 2.3, the equivalent conditions for $0 < w_a < w_r < \infty$ are $C_{21}C_{12} < 0$, $(C_{11} + C_{22})C_{21} < 0$ and $(C_{11} - C_{22})C_{21} > 0$. Clearly $C_{12}C_{21} < 0$. And $(C_{11} - C_{22})C_{21} > 0$ because of $C_{21} > 0$ and

$$(C_{11} - C_{22}) = (a - \lambda)(a - \lambda^{-1})(\mu^{-2} - \mu^{2}) > 0.$$

Since $C_{21} > 0$, $(C_{11} + C_{22})C_{21} < 0$ if and only if $tr(C) = C_{11} + C_{22} < 0$. Because we know C is hyperbolic matrix with tr(C) < 0, tr(C) must be less than -2. Thus

$$(2.10) tr(C) = (a - \lambda)(a - \lambda^{-1})(\mu^2 - 2 + \mu^{-2}) + 2 < -2.$$

It completes the proof.

Now we consider the position of fixed points of the matrix A and C.

Theorem 2.12. Suppose that A is the hyperbolic matrix in (2.4) with $-\infty < z_a < 0 < z_r < \infty$. Then the fixed points of A are

(2.11)
$$z_a = \frac{1}{a - \lambda} \text{ and } z_r = \frac{1}{a - \lambda^{-1}}.$$

Proof. By the Equation (2.3),

$$z_{a}, z_{r} = \frac{(2a - \lambda - \lambda^{-1}) \pm \sqrt{(\lambda + \lambda^{-1})^{2} - 4}}{2(a - \lambda)(a - \lambda^{-1})}$$

$$= \frac{(2a - \lambda - \lambda^{-1}) \pm |\lambda - \lambda^{-1}|}{2(a - \lambda)(a - \lambda^{-1})}$$

$$= \frac{(2a - \lambda - \lambda^{-1}) \pm (\lambda - \lambda^{-1})}{2(a - \lambda)(a - \lambda^{-1})}$$

$$= \frac{2(a - \lambda^{-1})}{2(a - \lambda)(a - \lambda^{-1})} \text{ or } \frac{2(a - \lambda)}{2(a - \lambda)(a - \lambda^{-1})}$$

$$= \frac{1}{(a - \lambda)} \text{ or } \frac{1}{(a - \lambda^{-1})}.$$

Since $(a-\lambda) < 0$ and $(a-\lambda^{-1}) > 0$, the attracting fixed point z_a of A is $1/(a-\lambda)$ and the repelling fixed point z_r of A is $1/(a-\lambda^{-1})$.

Theorem 2.13. Suppose that C is the hyperbolic matrix in (2.5) with $0 < w_a < w_r < \infty$. Then the fixed points of C are

$$w_a = \frac{E - \sqrt{D}}{F}$$
 and $w_r = \frac{E + \sqrt{D}}{F}$

where $E = (\lambda - a)(a - \lambda^{-1})(\mu^4 - 1)$, $F = 2a(\lambda - a)(a - \lambda^{-1})(\mu^2 - 1)$, and $D = [(a - \lambda)(a - \lambda^{-1})(\mu^2 - 1)^2 + 2\mu^2]^2 - 4\mu^4$.

Proof. By the Equation (2.3), the fixed points w_a , w_r of C are

$$\frac{(C_{11} - C_{22}) \pm \sqrt{(C_{11} + C_{22})^2 - 4}}{2C_{21}}$$

$$= \frac{[(a - \lambda)(a - \lambda^{-1})(\mu^{-2} - \mu^2)] \pm \sqrt{(C_{11} + C_{22})^2 - 4}}{-2a(a - \lambda)(a - \lambda^{-1})(1 - \mu^{-2})}$$

$$= \frac{[(a - \lambda)(a - \lambda^{-1})(1 - \mu^4)] \pm \sqrt{[(C_{11} + C_{22})\mu^2]^2 - 4\mu^4}}{-2a(a - \lambda)(a - \lambda^{-1})(\mu^2 - 1)}$$

$$= \frac{[(\lambda - a)(a - \lambda^{-1})(\mu^4 - 1)] \pm \sqrt{D}}{2a(\lambda - a)(a - \lambda^{-1})(\mu^2 - 1)}$$

where

$$D = [(C_{11} + C_{22})\mu^{2}]^{2} - 4\mu^{4}$$

$$= [(a - \lambda)(a - \lambda^{-1})(\mu^{4} + 1 - 2\mu^{2}) + 2\mu^{2}]^{2} - 4\mu^{4}$$

$$= [(a - \lambda)(a - \lambda^{-1})(\mu^{2} - 1)^{2} + 2\mu^{2}]^{2} - 4\mu^{4}.$$

Therefore the facts $0 < \lambda^{-1} < a < \lambda$ and $\mu^2 > 1$ prove the theorem.

Theorem 2.14. Suppose the matrices A, B, C in (2.4) and (2.5) satisfy $0 < \lambda^{-1} < a < \lambda$, $\mu^2 > 1$ and $(a - \lambda)(a - \lambda^{-1})(\mu^2 - 2 + \mu^{-2}) < -4$. Then $\{A, B, C\}$ form generators of the fundamental group π of a punctured torus $\Sigma(1, 1)$.

Proof. We should show that $-\infty < z_a < 0 < z_r < w_a < w_r < \infty$. By Theorem 2.11, it is enough to show that $z_r < w_a$. Since $(a - \lambda^{-1}) > 0$, we have to show that $2a(\lambda - a)(\mu^2 - 1) < E - \sqrt{D}$; that is

$$\sqrt{D} < E - 2a(\lambda - a)(\mu^2 - 1)
= (\lambda - a)(\mu^2 - 1) [(a - \lambda^{-1})(\mu^2 + 1) - 2a]
= (\lambda - a)(\mu^2 - 1) [(a - \lambda^{-1})(\mu^2 - 1) - 2\lambda^{-1}].$$

Since $(a - \lambda^{-1})(\mu^2 - 1) > (a - \lambda^{-1})(\mu^2 + \mu^{-2} - 2) > 4(\lambda - a)^{-1} > 2\lambda^{-1}$, the right-hand-side of the inequality is positive. Hence we will show

$$D = [(a - \lambda)(a - \lambda^{-1})(\mu^2 - 1)^2 + 2\mu^2]^2 - 4\mu^4$$

< $(\lambda - a)^2(\mu^2 - 1)^2 [(a - \lambda^{-1})(\mu^2 - 1) - 2\lambda^{-1}]^2$.

After some calculations we can get

$$-(a-\lambda^{-1})\mu^2 < -\lambda^{-1}(\lambda-a)(a-\lambda^{-1})(\mu^2-1) + \lambda^{-2}(\lambda-a).$$

This is equivalent to $\left[(a-\lambda^{-1})\mu^2+(\lambda-a)\right](\lambda^{-1}a)>0$. The conditions $0<\lambda^{-1}< a<\lambda$ and $\mu^2>1$ prove the theorem.

Theorem 2.15. Suppose the matrices A, B, C in (2.6) and (2.7) satisfy $\lambda < a < \lambda^{-1} < 0$, $\mu^2 > 1$ and $(a - \lambda)(a - \lambda^{-1})(\mu^2 - 2 + \mu^{-2}) < -4$. Then $\{A, B, C\}$ form generators of the fundamental group π of a pair of pants.

Proof. This can be proved by the same way in the Theorem 2.14.

Finally we consider the relations of traces of A, B and C in $\mathbf{SL}(2,\mathbb{R})$. The matrices A and B can be endowed with positive or negative traces. For each case, we have $(a - \lambda)(a - \lambda^{-1}) < 0$ and $\mu^2 > 1$. Thus the trace of matrix C is always negative. i.e.,

$$(2.12) tr(C) = (a - \lambda)(a - \lambda^{-1})(\mu^2 - 2 + \mu^{-2}) + 2 < -2.$$

ACKNOWLEDGEMENTS

I want to thank W. Goldman for introducing me to this subject.

REFERENCES

- 1. A. Beardon: The geometry of discrete groups. Graduate Texts in Mathematics, 91. Springer-Verlag, New York, 1983. MR 85d:22026
- W. M. Goldman: Geometric structures on manifolds and varieties of representations. Geometry of group representations (Boulder, CO, 1987), (pp. 169-198), Contemp. Math., 74, Amer. Math. Soc., Providence, RI, 1988. MR 90i:57024
- 3. _____: Convex real projective structures on compact surfaces. J. Differential Geom. 31 (1990), no. 3, 791-845. MR 91b:57001
- 4. _____: The modular group action on real SL(2)-characters of a one-holed torus. Geometry and Topology 7 (2003), 443-486.

- D. Johnson & J. J. Millson: Deformation spaces associated to compact hyperbolic manifolds. In: Roger Howe (Ed.), Discrete groups in geometry and analysis (New Haven, Conn., 1984), (pp. 48-106), Progr. Math., 67, Birkhäuser Boston, Boston, MA, 1987. MR 88j:22010
- 6. L. Keen: Canonical polygons for finitely generated Fuchsian groups. *Acta Math.* 115 (1965) 1-16. MR 32#1349
- 7. H. C. Kim: Matrix presentations of the Teichmüller space of a pair of pants. J. Korean Math. Soc. (2004), 1–23. To Appear.
- W. Thurston: Three-dimensional geometry and topology. Vol. 1. Edited by Silvio Levy. Princeton Mathematical Series, 35. Princeton University Press, Princeton, NJ, 1997. MR 97m:57016
- 9. S. Wolpert: On the Weil-Petersson geometry of the moduli space of curves. Amer. J. Math. 107 (1985), no. 4, 969-997. MR 87b:32040

DEPARTMENT OF MATHEMATICS EDUCATION, KOREA UNIVERSITY, ANAM-DONG, SEONGBUK-GU, SEOUL 136-701, KOREA

Email address: hongchan@korea.ac.kr