Index Transitivity and Transformation of Separable Systems

분리가능 시스템의 지수 추이성과 변환

  • 변석우 (경성대학교 컴퓨터과학과)
  • Published : 2004.05.01

Abstract

Separable systems are defined in term rewriting systems, respecting the notion of separability in the λ-calculus. In this research, we generalize separable systems of term rewriting systems, which was studied in restrictive systems such as constructive systems. We also associate separability with index-transitivity and with forward branching Separability is identified with forward branching, and strong sequentiality with index-transitivity satisfies separability. These are such good properties that enable us to describe the procedure of pattern-matching as an index tree, which is a sort of automata, and to transform separable systems into a constructor system with a simple pattern. Separable systems, in particular, can be translated into the λ-calculus. This research can serve a theoretical basis which allows functional languages to be explained by the λ-calculus, since functional languages such as ML and Haskell belong to a subclass of separable systems.

분리가능 시스템은 람다 계산법의 분리가능성을 따라서 정의된 항 개서 시스템이다. 본 연구에서는 기존 구성자 시스템에 한정되어 연구되었던 분리가능 시스템의 정의를 일반 항 개서 시스템으로 확장하고, 이 시스템의 특징을 전진 분지성 및 지수 추이성과 연관하여 설명한다. 분리가능성은 전진 분지성과 동일하며, 지수 추이성을 만족하는 강 순차성은 분리가능성을 갖는다. 이러한 특성에 따라 분리가능 시스템의 패턴 매칭 과정은 지수 트리 형태의 오토마타로 표현될 수 있고, 단순한 패턴을 갖고 있는 구성자 시스템으로 변환될 수 있는 장점을 갖고 있다. 특히, 분리가능 시스템은 람다 계산법으로 번역될 수 있다. ML이나 Haskell과 같은 함수형 언어들은 분리가능 시스템의 한 부류이므로, 본 연구는 함수형 언어의 의미를 람다 계산법으로 설명할 수 있도록 하는 이론적 기반으로도 이용될 수 있다.

Keywords

References

  1. S. Byun, Some properties of separable systems, J. of Korean Information Science Society (A), vol. 25, No. 4, April 1989
  2. S. Byun, J.R. Kennaway, R. Sleep, Transformation of orthogonal term rewriting systems, Lecture Notes in Computer Science 1023, pp. 73-87, Springer-Verlag, 1995 https://doi.org/10.1007/3-540-60688-2_36
  3. H. Barendregt, The Lambda Calculus: Its Syntax and Semantics, North-Holland, 1984
  4. I. Durand, Bounded, strongly sequential, and forward branching term rewriting systems, J. of Symbolic Computation, 18:319-352, Springr-Verlag, 1994 https://doi.org/10.1006/jsco.1994.1050
  5. B. Saliner and R. Strandh, Simulating forward-branching systems with constructor systems. TAPSOFT '97, M. Bidoit and M. Dauchet (eds.), Lecture Notes in Computer Science No. 1214, 153-164, 1997 https://doi.org/10.1007/BFb0030593
  6. S. Thatte, On the correspondence between two classes of reduction systems, 20:83-85, 1985 https://doi.org/10.1016/0020-0190(85)90068-7
  7. S. Peyton-Jones, The Implementation of Functional Programming Languages, Prentice-Hall, 1987
  8. J.W. Klop. Term rewriting systems, In Abramsky et al., editors, Handbook of Logic in Computer Science, volume II. Oxford University Press, 1992
  9. N. Dershowitz and J.-P. Jounnaud, Rewrite Systems, in van Leeuwen (eds.), Handbook of Theoretical Computer Science, Vol. B, Elsevier, 1990
  10. G. Huet and J.-J. Levy, Computations in Orthogonal Rewrite Systems {Ⅰ} and {Ⅱ}, in Lassez and Plotkin, eds., Computatinal Logic : Essay in Honor of Alan Robinson, MIT Press, 1991. (Originally appeared as Technical Report 359, INRIA, 1979)
  11. J.W. Klop and A. Middeldorp, Sequentiality in orthogonal term rewriting systems, Journal of Symbolic Computation, 12:161-195, 1991 https://doi.org/10.1016/S0747-7171(08)80124-1
  12. Satish Thatte, On the correspondence between two classes of reduction systems, Information Processing Letters, 20:83-85, 1985 https://doi.org/10.1016/0020-0190(85)90068-7
  13. S. Byun, J.R. Kennaway, and R. Sleep, Lambda-definable Term Rewriting Systems, Lecture Notes in Computer Science 1179, pp. 106-115, Springer-Verlag, 1996 https://doi.org/10.1007/BFb0027784
  14. R. Plasmeijer and M. Eekelen, Functional programming and parallel Graph rewriting, Addison-Wesley, 1993
  15. J.R. Kennaway, The Specificity Rule for Lazy Pattern-Matching in Ambiguous Term Rewriting Systems, ESOP '90, Lecture Notes in Computer Science No. 432, Springer-Verlag, 1990 https://doi.org/10.1007/3-540-52592-0_68