References
- IEEE Trans. Information Theory v.28 Bit-Serial Reed-Solomon Encoder E.R.Berlekamp https://doi.org/10.1109/TIT.1982.1056591
-
IEEE Trans. Computers
v.C-34
VLSI Architectures for Computing Multiplications and Inverses in GF(
$2^m$ ) C.C.Wang;T.K.Truong;H.M.Shao;J.K.Omura;I.S.Reed https://doi.org/10.1109/TC.1985.1676616 -
J. Soc. Electro. Comm.
A Fast Algorithm for Computing Multiplicative Inverses in GF(
$2^m$ )Using Normal Bases T.Itoh;O.Teechai;S.Tsujii -
한국통신정보보호학회 종합학술발표회 논문집
v.6
no.1
유한체 GF(
$2^m$ )상에서의 빠른 역원계산기법 박정식;안금혁;김영길;장청룔 -
정보보호논문지
v.13
no.2
GF(
$2^m$ )에서 정규기저를 이용한 고속 곱셈 역원 역산 방법 장용희;권용진 -
Electronics Letters
v.33
no.3
Improved Normal Basis Inversion in GF(
$2^m$ ) S.M.Ten https://doi.org/10.1049/el:19970172 -
IEEE Trans. on Inform. Theory
v.43
no.2
Normal Basis of the Finite Field
$F_{2(p-1)/p^m}$ over F₂ M.Wang;F.Blake https://doi.org/10.1109/18.556132 - ISSPA'99 Normal Basis Inversion in Some Finite Fields J.H.Jeng
-
IEEE Trans. Computers
v.41
no.8
Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields GF(
$2^m$ ) M.A.Hansan;M.wang;V.K.Bhargava - thesis for Ph. D. in Combinatorics and Optimization Normal Bases over Finite Fields S.Gao
-
IEEE Trans. Computers
v.51
no.1
A New Hardware Architecture for Operation in GF(
$2^m$ ) C.H.Kim;S.Oh;J.Lim https://doi.org/10.1109/12.980019 - Error Control Systems for Digital Communication and Storage S.B.Wicker