디스크립터 시스템을 위한 혼합 $H_{2}/H_{\infty}$제어기의 설계

Mixed $H_{2}/H_{\infty}$ Controller Design for Descriptor Systems

  • Choe, Yeon-Wook (Department of Control & Instrumentation Pukyoung National Univ.)
  • 발행 : 2004.07.01

초록

The descriptor system model has a high ability in representing dynamical systems. It can preserve physical parameters in the coefficient matrices, and describe the dynamic part, static part, and even the improper part of the system in the same form. The design of mixed $H_{2}/H_{\infty}$ controllers for linear time-invariant descriptor systems is considered in this paper. Firstly, an $H_2$ and $H_{\infty}$ synthesis problems fur a descriptor system are presented separately in terms of linear matrix inequalities (LMIs) based on the bounded real lemma. Then, we show that the existence of a mixed $H_2/H_{\infty}$ controller by which the $H_2$ norm of the second channel is minimized while keeping the $H_2$ norm bound of the first channel less than ${\gamma}$, is reduced to the linear objective minimization problem. The class of desired controllers that are assumed to have the same structure as the plant is parameterized by using the linearizing change of variables.

키워드

참고문헌

  1. K. Takaba, N. Morihira and T. Katayama, 'A Generlaized Lyapunov Theorem for Descriptor System', Systems & Control Letters, vol.24, no.1, pp.49-51, 1995 https://doi.org/10.1016/0167-6911(94)00041-S
  2. I. Masabucji, Y. Kamitane, A. Ohara, and N. Suda, '$H_{\infty}$ control for Descriptor Systems: A Matrix Inequalities Approach', Automatica, 33(4): 669-673, 1997 https://doi.org/10.1016/S0005-1098(96)00193-8
  3. A. Rehm and F. Allgower, '$H_{\infty}$ control of decriptor systems with high index', IFAC World Congress, Beijing, July 5-9, vol.D,pp.31-37,1999
  4. K. Takaba, N. Morihira, and T. Katayama, '$H_{\infty}$ control for descriptor systems,' A J-spectral factorization approach Proc. of 33nd Conference on Decision and Control, pp.2251-2256, 1994
  5. J. C.Doyle, K. Glover, P.P. Khargonekar, and B.A. Francis, 'State-Space solution to standard $H_2$ and $H_{\infty}$ control problem', IEEE Trans. Automat. Contr. AC-34, vol.8, pp. 831-847, 1989 https://doi.org/10.1109/9.29425
  6. E. Uezato and M. Ikeda, 'Strict LMI Conditions for Stability, Robust Stabilization, and $H_{\infty}$ control of Descriptor Systems', Proc. of 38th Conference on Decision & Control, pp.4092-4097, 1999 https://doi.org/10.1109/CDC.1999.828001
  7. E. Uezato, M. Ikeda, and T. Lee, 'A Strict Condition for $H_{\infty}$ Control of Descriptor Systems', Trans. SICE, vol.36, no.2, pp.165-171,2000(in japanese) https://doi.org/10.9746/sicetr1965.36.165
  8. P.P. Khargonekar and M.A. Rotera, 'Mixed $H_2/H_{\infty}$ Control:A Convex Optimization Approach', IEEE Trans. AC.. Vol.36, No.3, pp.824-837, 1991 https://doi.org/10.1109/9.85062
  9. K. Sato, M. Oya, and T. Kobayashi, 'Mixed $H_2/H_{\infty}$ Control Problem for Descriptor Systems via LMI', Proc. of 38th Conference on Decision & Control, pp.205-210, 1997 https://doi.org/10.1109/CDC.1997.650616
  10. C. Scherer, P. Gahinet, and M. Chilali, 'Multi-objective Output-Feedback Control via LMI Optimization', IEEE Trans. Automatic Control, vol. AC-42, no.7, pp.896-911,1997 https://doi.org/10.1109/9.599969
  11. F.R. Gantmacher, The Theory of Matrices, Chelsea, 1959
  12. P. Gahinet, A. Nemiroski, A.J. Laub, and M. Chilali, LMI Control Toolbox, The Math Works, Inc, 1995
  13. K. Takaba and T. Katayama, 'Robust $H_2$performance of uncertain descriptor systems', Proc. 1997 European Control Conference, WE-E-E-2, 1997
  14. A. Rehm and F. Allgower, 'Descriptor and Non-Descriptor Controllers in $H_{\infty}$ control of Descriptor Systems', 2000 Robust Control Conference, Czecho, 2000