DOI QR코드

DOI QR Code

Experimental Study on Flow Characteristics in Meandering Channel

사행수로에서 흐름 특성에 관한 실험적 연구

  • 서일원 (서울대학교 공과대학 지구환경시스템공학부) ;
  • 성기훈 (동부엔지니어링㈜ 수자원연구실) ;
  • 백경오 (서울대학교 공과대학 지구환경시스템공학부) ;
  • 정성진 (서울대학교 공과대학 지구환경시스템공학부)
  • Published : 2004.07.01

Abstract

In order to investigate characteristics of the primary flow and the secondary currents in the meandering channel, laboratory experiments were conducted in the meandering channel made up of alterative bends haying 120。 arc angle. Experiments were performed in two types of cross-sections, a rectangular cross-section and a curved cross-section which was made to adopt a beta probability function. Three-dimensional velocity fields were measured using a micro-ADV. As the result of experiments, in case of the rectangular cross-section, the primary flow occurred taking the shortest course, which is similar to the result of previous researches. In case of the curved cross-section, the primary flow was expected to occur along the thalweg. but it occurred almost along the shortest way. This is considered due to effects of bottom roughness and sinuosity Not only a main cell but also a secondary cell of secondary currents were clearly shown by mean of the stream function. The secondary current intensity has the maximum value near the apex of the second bend for cases of both rectangular and curved cross-sections. However, the value of the secondary current intensity for the curved section is slightly larger than that for the rectangular cross-section. Also, in case of the rectangular cross-section, the higher the ratio of width to depth is, the larger the secondary current intensity is.

다중 만곡부에서의 주흐름과 이차류의 흐름 특성을 분석하기 위하여 중심각 120$^{\circ}$인 두 개의 만곡부로 이루어진 사행수로에서 실험을 수행하였다. 실험수로의 횡단면은 직사각형과 곡선형 두 가지 형태로 제작하였으며, 곡선형 단면 형상 결정에는 베타함수를 이용하였다. 3차원 유속장의 측정은 micro-ADV를 이용하였다. 실험결과, 직사각형 수로에서 주흐름은 수로의 가장 짧은 경로를 따라 발생하였으며, 이는 기존 연구자들의 결과와 일치한다. 곡선형 수로에서도 주흐름이 직사각형 수로에서의 주흐름의 거동과 비슷한 양상을 보이는 것으로 밝혀졌다. 곡선형 수로에서의 실험결과가 실제 자연하천의 만곡부에서의 주흐름 거동(최심선을 따라 발생)과 상이하게 나타나는 이유는 실험수로의 바닥 조도와 사행도에 기인한 것으로 사료된다. 이차류의 정량적인 분석을 위하여 흐름함수를 도입한 결과, 만곡부에서 주 셀 뿐만 아니라 바깥제방 셀의 위치 및 형태를 확인할 수 있었다. 또한 이차류 강도를 계산한 결과, 직사각형 및 곡선형 수로에서 최대값은 두 번째 만곡부의 정점 부근에서 가장 크게 나타나며 곡선형 수로의 이차류의 강도가 직사각형 수로의 값보다 크게 나타나고 있음을 알 수 있었다. 직사각형 수로의 경우, 하폭 대 수심비가 커질수록 이차류의 강도가 증가하고 있음을 확인하였다.

Keywords

References

  1. Almquist, C. W., Holley, E. R. (1985). Transverse mixing in meandering laboratory channels with rectangular and naturally varying cross sections. Univ. of Texas at Austin, Austin, Texas
  2. Baek (2004). Transverse mixing in meandering channels with unsteady pollutant source. PhD. thesis, Seoul National Univ., Korea
  3. Bathurst, J. C., Thorne, C. R., and Hey, R. D. (1979). 'Secondary flow and shear stress at river bends.' J. Hydr. Div., Vol. 105, No. 10, pp. 1277-1295
  4. Blanckaert, K., Graf, W. H. (2001). 'Mean flow and turbulence in open-channel bend.' J. Hydr. Engrg., ASCE, Vol. 127, No. 10, pp. 835-847 https://doi.org/10.1061/(ASCE)0733-9429(2001)127:10(835)
  5. Blanckaert, K. (2002). 'Secondary currents measured in sharp open-channel bends.' Proc. of the International Conference on Fluvial Hydraulics, River Flow 2002, Louvain-la-Neuve, Belgium, Vol. 1, pp. 117-125
  6. Booij, R. (2002). 'Modelling of the secondary flow structure in river bends.' Proc. of the International Conference on Fluvial Hydraulics, River Flow 2002, Louvain-la-Neuve, Belgium, Vol. 1 pp. 127-133
  7. Boxall, J. B., Guymer, I. and Marion, A. (2003). 'Transverse mixing in sinuous natural open channel flows.' J. Hydr. Res., Vol. 41, No.2, pp. 153-165 https://doi.org/10.1080/00221680309499958
  8. Demuren, A. O., Rodi, W. (1986). 'Calculation of flow and pollutant dispersion in meandering channels.' J. Fluid Mech., Vol. 172, pp. 63-92 https://doi.org/10.1017/S0022112086001659
  9. De Vriend, H. J. (1981). 'Velocity redistribution in curved rectangular channels.' J. Fluid Mech., Vol. 107, pp. 423-439 https://doi.org/10.1017/S0022112081001833
  10. Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. and Brooks, N. H. (1979). Mixing in inland and coastal waters. Academic Press
  11. Henderson, F. M. (1966). Open channel flow. Macmillan Publishing Co., New York
  12. Krishnappan, B. G., Lau, Y. L. (1977). 'Transverse mixing in meandering channels with varying bottom topography.' J. Hydr. Res., Vol. 15, No. 4, 351-371 https://doi.org/10.1080/00221687709499640
  13. Leschziner, M. A., Rodi, W. (1979). 'Calculation of strongly curved open channel flow.' J. Hydr. Div., Vol. 105, pp. 1297-1314
  14. Naot, D., Rodi, W. (1982). 'Calculation of secondary currents in channel flow.' J. Hydr. Div., Vol. 108, pp. 948-968
  15. Rozovskii, I. L. (1961). Flow of water in bends of open channels. Israel Program for Science Translation, Jerusalem (in Russian, 1957)
  16. Seo, I. W. and Baek, K. O. (2004). 'Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams.' J. Hydr. Engrg., ASCE, Vol. 130, No. 3, pp. 227-236 https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(227)
  17. Shiono, K., Muto, Y. (1998). 'Complex flow mechani-sms in compound meandering channels with overbank flow.' J. Fluid Mech., Vol. 376, pp. 221-261 https://doi.org/10.1017/S0022112098002869
  18. Shukry, A. (1950). 'Flow around bends in an open flume.' Transactions, ASCE, Vol. 115, pp. 751-779
  19. Thomson, J. (1876). 'On the origin and winding of rivers in alluvial plains, with remarks on the flow around bends in pipes.' Proceedings, Royal Society of London, Vol. 25, pp. 5-8 https://doi.org/10.1098/rspl.1876.0004
  20. Proceedings, Royal Society of London v.25 On the origin and winding of rivers in alluvial plains, with remarks on the flow around bends in pipes Thomson,J. https://doi.org/10.1098/rspl.1876.0004

Cited by

  1. Numerical Analysis for Bed Changes at the Meandering Stream due to a Short Term Flood Event vol.35, pp.6, 2015, https://doi.org/10.12652/Ksce.2015.35.6.1229