Abstract
This paper presents a new edge detection algorithm in color image. The proposed Adaptive morphological Wavelet-CNN algorithm is divided into two parts : The Adaptive morpholog and WCNN(Wavelet Cellular Neural Networks). It detects the optimal edge with applying this color image to WCNN algorithm, after it does level up a boundary side of a color image by using the adaptive morphology as the threshold of an input color image. Also, it is used not a conventional fixed mask edge detection method but variable mask method which is called a variable BBM. Finally, to show the feasibility of the proposed algorithm, this paper provides by simulation that the color image consists of 30.
본 논문에서는 컬러 영상에서의 새로운 에지 검출 알고리즘을 제안한다. 제안된 적응 형태학적 WCNN알고리즘은 적응 형태학과 WCNN알고리즘으로 구성된다. 이는 입력된 컬러 영상의 임계값에 따라 적응 형태학을 이용하여 경계면의 차를 레벨업 시킨 후 WCNN 알고리즘을 이용하여 최적의 에지를 검출한다. 또한, 기존의 고정 마스크에지 검출방식을 탈피하여, 영상의 임계값의 차에 따라 가변적으로 변화하는 가변 BBM(Beak Y. H, Byun O. H, Moon S. R)마스크를 사용한다. 제안된 알고리즘의 기존의 연구에 비해 유용성을 검증하기 위해 본 논문은 30개의 컬러 영상의 모의 실험을 제공한다.