Efficient 3D Object Simplification Algorithm Using 2D Planar Sampling and Wavelet Transform

2D 평면 표본화와 웨이브릿 변환을 이용한 효율적인 3차원 객체 간소화 알고리즘

  • 장명호 (LG전자 디스플레이제품연구소) ;
  • 이행석 (금오공과대학교 컴퓨터공학) ;
  • 한규필 (금오공과대학교 컴퓨터공학) ;
  • 박양우 (경운대학교 멀티미디어공학부)
  • Published : 2004.06.01

Abstract

In this paper, a mesh simplification algorithm based on wavelet transform and 2D planar sampling is proposed for efficient handling of 3D objects in computer applications. Since 3D vertices are directly transformed with wavelets in conventional mesh compression and simplification algorithms, it is difficult to solve tiling optimization problems which reconnect vertices into faces in the synthesis stage highly demanding vertex connectivities. However, a 3D mesh is sampled onto 2D planes and 2D polygons on the planes are independently simplified in the proposed algorithm. Accordingly, the transform of 2D polygons is very tractable and their connection information Is replaced with a sequence of vertices. The vertex sequence of the 2D polygons on each plane is analyzed with wavelets and the transformed data are simplified by removing small wavelet coefficients which are not dominant in the subjective quality of its shape. Therefore, the proposed algorithm is able to change the mesh level-of-detail simply by controlling the distance of 2D sampling planes and the selective removal of wavelet coefficients. Experimental results show that the proposed algorithm is a simple and efficient simplification technique with less external distortion.

본 논문에서는 컴퓨터 응용환경에서 3차원 물체를 효율적으로 표현하기 위해 웨이브릿 변환과 2D 평면 표본화를 이용한 3D 객체 간소화 알고리즘을 제안한다. 기존의 웨이브릿 변환을 이용한 메쉬의 압축 및 간소화 알고리즘은 3차원 정점에 대해서 변환을 수행하기 때문에 연결 정보가 필요한 합성과정에서 정점들을 다시 다각형으로 연결시키는 타일링 최적화 문제를 해결해야만 하는 단점을 가지고 있다. 그러나 제안한 방식은 3차원 메쉬를 2차원 평면상으로 표본화하여 각 평면에 대한 2차원 다각형을 최소화하기 때문에 변환이 용이하며 2차원 정점을 순서적으로 나열하면 2개의 1차원 배열 자체가 연결정보를 포함하기 때문에 1차원 변환으로 다각형을 변환 및 표현할 수 있다는 장점이 있다. 그리고 표본화 평면의 간격조정과 각 평면에서의 웨이브릿 계수를 선택적으로 조정함으로써 간단히 LOD를 조절할 수 있다 2차원 다각형의 간소화는 주관적 화질에 영향을 주지 않는 작은 웨이브릿 계수를 선택하여 제거함으로써 수행되어진다. 그 결과 제안된 알고리즘은 간단하지만 효율적이다. 실험을 통하여 제안한 알고리즘은 적은 외부 붕괴를 가지면서 정확한 간소화 메쉬를 보여준다는 것을 알 수 있다.

Keywords

References

  1. Carl Erikson, Polygonal Simplification: An Overview. UNC Chapel Hill Computer Science Technical Report TR96-016. 1996
  2. Jonathan D. Cohen. Concepts and Algorithms for Polygonal Simplification. SIGGRAPH 99 Course Tutorial #20: Interactive Walkthroughs of Large Geometric Datasets. pp. C1-C34. 1999. also in SIGGRAPH 2000 Course Tutorial
  3. David P. Luebke, A Developer's Survey of Polygonal Simplification Algorithms. IEEE Computer Graphics&Applications. vol. 21, no. 3, pp. 24-35, 2001 https://doi.org/10.1109/38.920624
  4. Schroeder, W. J. Zarge, J. A. and Lorensen, W. E., Decimation of triangle meshes. In ACM Computer Graphics(SIGGRAPH'92 Proceedings), vol. 26, pp. 55-64, 1992 https://doi.org/10.1145/142920.134010
  5. Michael Garland, Paul S. Heckbert, August Surface Simplification Using Quadric Error Metrics, In SIGGRAPH '97 Proc., pp.209-216. 1997 https://doi.org/10.1145/258734.258849
  6. Michael Garland, Paul S. Heckbert. Simplifying Surfaces with Color and Texture using Quadric Error Metrics. IEEE Visualization'98, pp. 263-270, Oct. 1998 https://doi.org/10.1109/VISUAL.1998.745312
  7. Hoppe, H., Progressive meshes. In ACM Computer Graphics Proc., Annual Conference Series(Sggraph'96), pp.99-108. 1996 https://doi.org/10.1145/237170.237216
  8. Hoppe, H., DeRose, T., Duchamp, T., Mcdonald, J. and Stuetzle, W., Mesh optimization. In ACM Computer Graphics Proc., Annual Conference Series(Siggraph '93), pp.19-26. 1993 https://doi.org/10.1145/166117.166119
  9. Low, K. L. and Tan, T. S., Model simplification using vertex clustering. In 1997 ACM Symposium on Interactive 3D Graphics, pp.75-82. 1997 https://doi.org/10.1145/253284.253310
  10. Rossignac, J. and Borrel, P., Multiresolution 3D approximation for rendering complex scenes. In Geometric Modeling in Computer Graphics, pp. 455-465. 1993
  11. Jaideva C. Goswami and Andrew K. Chan. Fundamentals of Wavelets : Theory, Algorithms, and Applications. Published simultaneously in Canada. 1999
  12. Eric J. StoJlnitz, Tony D. Derose, and David H. Sallesin, Wavelets for Computer Graphics-Theory and Applications, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996
  13. Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsberry, and Werner Stuetzle, 'Multiresolution Analysis of Arbitrary Meshes,' SIGGRAPH95, pp 173-182, 1995 https://doi.org/10.1145/218380.218440
  14. Markus Gross, O. Staadt, and R. Gatti, 'Efficient Triangular Surface Approximations Using Wavelets and Quadtree Structures,' IEEE Transactions on Visual and Computer Graphics, vol. 2, no. 2, pp. 130-144, 1996 https://doi.org/10.1109/2945.506225
  15. Greg Turk, 'Re-tiling Polygonal Surfaces,' SIGGRAPH92, pp. 55-64, 1992 https://doi.org/10.1145/133994.134008
  16. I. Daubechies, 'Orthogonal bases of compactly supported wavelets,' Commun. Pure Appl., Math., 41. pp. 909-996, 1988 https://doi.org/10.1002/cpa.3160410705
  17. A. Chohen, I. Daubechies, Ten Lectures on Wavelets. CBMS-NSF Ser, App. Math.. 61. Philadelphia:SIAM, 1992
  18. Leach, G., Improving Worst-Case Optimal Delaunay Triangulation Algorithms, Department of Computer Science, Royal Melbourne Institute of Technology, Melborne, Australia, June 15, 1992