A Cost Model for the Performance Prediction of the TPR-tree

TPR-tree의 성능 예측을 위한 비용 모델

  • Published : 2004.06.01

Abstract

Recently, the TPR-tree has been proposed to support spatio-temporal queries for moving objects. Subsequently, various methods using the TPR-tree have been intensively studied. However, although the TPR-tree is one of the most popular access methods in spatio-temporal databases, any cost model for the TPR-tree has not yet been proposed. Existing cost models for the spatial index such as the R-tree do not accurately ostinato the number of disk accesses for spatio-temporal queries using the TPR-tree, because they do not consider the future locations of moving objects. In this paper, we propose a cost model of the TPR-tree for moving objects for the first time. Extensive experimental results show that our proposed method accurately estimates the number of disk accesses over various spatio-temporal queries.

최근에 움직이는 객체의 미래 위치를 위한 TPR-tree가 제안되었으며, TPR-tree를 이용한 많은 연구들이 제안되었다. 그러나, TPR-tree가 시공간 데이타베이스에서 널리 사용됨에도 불구하고, TPR-tree를 위한 비용 모델은 제안되지 않았다. R-tree와 같은 공간 색인을 위한 비용 모델들은 움직이는 객체들의 미래 위치를 전혀 고려하지 않기 때문에, TPR-tree에 대한 시공간 질의를 위한 디스크 액세스 수를 정확하게 예측하지 못한다. 본 논문에서는 움직이는 객체들의 미래 위치를 고려한 TPR-tree를 위한 비용 모델을 처음으로 제안한다. 다양한 실험 결과, 제안된 TPR-tree의 비용 모델은 디스크 액세스 수를 정확하게 예측한다.

Keywords

References

  1. L. Forlizzi, R.H. Guting, E. Nardelli, and M. Schneider, 'A Data Model and Data Structures for Moving Objects Databases,' ACM SIGMOD, 2000 https://doi.org/10.1145/335191.335426
  2. A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao, 'Modeling and Querying Moving Objects,' ICDE, 1997
  3. P.K. Agarwal, L. Arge, and J. Erickson, 'Indexing Moving Points,' PODS, 2000 https://doi.org/10.1145/335168.335220
  4. G. Kollios, D. Gunopulos, and V.J. Tsotras, 'On Indexing Mobile Objects,' PODS, 1999 https://doi.org/10.1145/303976.304002
  5. D. Pfoser, C.S. Jensen, and Y. Theodoridis, 'Novel Approaches in Query Processing for Moving Object Trajectories,' VLDB, 2000
  6. S. Saltenis, C.S. Jensen, 'Indexing of Moving Objects for Location-Based Services,' ICDE, 2002
  7. S. Saltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez, 'Indexing the Positions of Continuously Moving Objects,' ACM SIGMOD, 2000 https://doi.org/10.1145/335191.335427
  8. Y. Tao and D. Papadias, 'MV3R-Tree: A Spatio Temporal Access Method for Timestamp and Interval Queries,' VLDB, 2001
  9. Y. Tao and D. Papadias, 'Time-Parameterized Queries in Spatio-Temporal Databases,' ACM SIGMOD, 2002 https://doi.org/10.1145/564691.564730
  10. O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez, 'Cost and Imprecision in Modeling the Position of Moving Objects,' ICDE, 1998
  11. N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger, 'The R*-Tree: An Efficient and Robust Access Method for Points and Rectangle,' ACM SIGMOD, 1990 https://doi.org/10.1145/93597.98741
  12. K. Porkaew, I. Lazaridis, and S. Mehrotra, 'Querying Mobile Objects in Spatio-Temporal Databases,' SSTD, 2001
  13. I. Kamel and C. Faloutsos, 'On Packing R-trees,' CIKM, 1993 https://doi.org/10.1145/170088.170403
  14. S.T. Leutenegger and M.A. Lopez, 'The Effect of Buffering on the Performance of R-Trees,' TKDE, 2000 https://doi.org/10.1109/69.842248
  15. Y. Theodoridis, E. Stefanakis, and T.K. Sellis, 'Efficient Cost Models for Spatial Queries Using R-Trees,' TKDE, Vol.12, No.1, pp. 19-32, 2000 https://doi.org/10.1109/69.842247
  16. S. Acharya, V. Poosala, and S. Ramaswany, 'Selectivity Estimation in Spatial Databases,' ACM SIGMOD, 1999 https://doi.org/10.1145/304182.304184
  17. U. S. Bereau of Census, 'Tiger/lines precensus files: 1994 technical documentation,' Technical report, 1994
  18. M. Stonebraker, J. Frew, K. Gardels, and J. Meredith, 'The SEQUOIA 2000 Storage Benchmark,' ACM SIGMOD, 1993 https://doi.org/10.1145/170036.170038
  19. P.B. Gibbons, Y. Matias, and V. Poosala, 'Fast Incremental Maintenance of Approximate Histograms,' VLDB, 1997