JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004(pp. 851-857)

A Scheme to Interpret a JSP Page Using a New
Concept of Scopes in Web Environment

Yongju Chung*, Dooheon Sor\g’wr

ABSTRACT

Server-side scripting languages for web applications have a different environment from general
programming languages. The reason is that some data in web applications should be transferred to a
distinct file of a page or should be maintained for a physical time, that is for session time. So JSP has
four kinds of new scopes such as page, request, session, application. And every identifiers in JSP are
classified and processed as one of the four scopes. This seems unavoidable to a scripting language because
of the web environment. So when a JSP page using these new scope concepts is interpreted the procedure
would be different from that of the general programming language’s scopes. This thesis has studied the
processing of the scopes which are considered in interpreting a script language code. This processing
method of the scopes in this article can be applied not only to JSP interpreting but also to a data processing
of similar ranges in web.

Keywords: web application, scripting language, JSP, scope, implicit object, directive, scripting tag, action

tag

1. INTRODUCTION

ASP, JSP and PHP are server-side script lan-
guages that are recently widely used in imple-
menting web applications. They are developed to
overcome the difficulty of the CGI method - the
difficulty of web design. They use tags to express
a web page like HTML. Among them JSP uses its
own concepts different from ASP or PHP, for
example, custom tags, standard action tags, although
the other two script languages use some of the
concepts implicitly. One of them is a new concept
of scopes. These new concept of scopes in JSP are
page scope, request scope, session scope and
application scope. The concept of these scopes are
designed because a JSP page is interpreted into a

¥ Corresponding Author: Yongju Chung, Address:
(330-180) San 27, Anseo-dong, Cheonan, Chungcheong-
namdo, Korea, TEL: +82-41-550-3463, FAX : +82-41-
550-3460, E-mail : chungy@cs.dankook.ac kr
Receipt date © June 11, 2004, Approval date : June 18, 2004
* Professor, Dankook Univ.
" Professor, Dept. of Computer Science, Yong—in Songdam
Univ.
(E-mail : mypham@naver.com)

servlet and the servlet runs in the web.

A JSP page is interpreted into a servlet by JSP
engine. And a servlet is a kind of Java program
running in the web to make a HTML file dy-
namically. In fact a servlet is executed like a CGI
program except it needs servlet engine. Since a
JSP page is interpreted into a servlet and the
servlet makes a HTML file dynamically fSP has
a advantage compared with ASP and PHP. That
is, one of the general purpose object-oriented
languages Java can be coded in a JSP page.(This
means all the Java packages can be used in a JSP
page.) To get this advantage JSP uses a new
concept of scopes. They are page scope, request
scope, session scope and application scope.

These scopes are necessary if the underlining
language is an objected-oriented language like
JSP. For example, a web site can be moved to a
different place. And suppose a client visit the old
site. Then it is not desirable for a web server to
make the client visit the new site again with a new
request HT'TP. In this case JSP uses an object for
the request HTTP and forwards the object from

852 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004

the old site to the new site. But the names of this
object in two JSP pages of the old site and the new
site are used identically. So when these two JSP
pages are being interpreted the names for the
object should has the same value. It means the
object name needs a new scope.(In JSP this scope
is called request scope.) Likewise JSP has four
kinds of scopes such as page scope, request scope,
session scope and application scope.

An object or an identifier with page scope is an
object or an identifier that can be accessible only
within the page when it is declared. And all
references to such an object or an identifier shall
be released after the response is sent back to the
client or the request is forwarded somewhere €lse.
JSP has 7 implicit objects with this scope. They
are page implicit object, request implicit object,
response implicit object, out implicit object, config
implicit object, pageContext implicit object,
exception implicit object. And the other object with
this scope is a bean object whose scope attribute
is page. An object or an identifier with request
scope is an identifier that can be accessible from
pages processing the same request where it is
declared. Objects or identifiers that have this scope
in JSP are request implicit object, parameter
names of the param action tag and bean object
names whose scope attribute is request. An object
or an identifier whose scope is session scope is an
identifier that can be accessible from pages
processing the same request that are in the same
session as the one in which they are declared.
Actually this scope is a range during session
implicit object exists. So this scope does not cover
logical range but physical time. Objects or iden—
tifiers that have session scope in JSP are session
implicit object and bean object names whose scope
attribute is session. An object or an identifier that
has application scope is an object or an identifier
that can be accessible from pages processing the
requests that are in the same application as the one
in which they are declared. Objects or identifiers
with application scope in JSP are application

implicit object, and bean object names whose scope
attribute is application.

In general one of the easy way to process objects
or identifiers with some kinds of scopes is to
maintain a few tables and to check the scopes in
compiling a program. But JSP is a tag language
and the formats of the tags are simple compared
with the general purpose language’s format. So an
interpreter can compile a JSP page into a servlet.
But in interpreting a JSP page it should be
considered that an object of a servlet can not be
constructed and can not be executed by another
servlet. All the objects of servlets in a web site
should be constructed and executed by JSP engine
calling service()’s of them. And the treatment of
scopes is one of the main topics in compiling a
language. But there are scarcely papers or articles
about this problem. The reason for this might be
because the interpreter of JSP is not thought to be
so complex or might be because Sun Microsystems,
a commercial company, has publicized JSP with the
interpreter at the same time. But the solution to
interpret a script language with these new scopes
is still unknown.

So this thesis shows a method of processing
identifiers or objects with these four scopes in
interpreting JSP pages. And an interpreter was
constructed for experiments. But the interpreter in
this paper is not a perfect one. Since the focus of
this paper is the concept of new scopes in the web
it can not process custom tags. The experiments
were carried out by executing two JSP pages and
two servlets which were interpreted by the
interpreter of this paper. The remainder of this
article describes shortly the JSP tags in session 2
and how to implement the interpreter focusing the
scopes in session 3 and finally the results.

2. TAGS IN JSP

Tags in JSP are classified into 5 categories, such
as directives, scripting element tags, standard

action tags, custom tags and comment tags.

A Scheme to Interpret a JSP Page Using a New Concept of Scopes in Web Environment 853

(Standard action tags and custom tags can be
classified as one because they all are action tags.)

2.1 Directives

Directives are messages to the JSP engine, that
is, they have some information on the current page
itself or setting for the page which should be
preprocessed by the JSP engine. Directives also
classified into 3 kinds of tags, such as page
directive, include directive and taglib directive. The
page directive has 11 attributes, such as, language,
extends, import, session, buffer, autoflush, isThread-
Safe, info, errorPage, isErrorPage, contentType.
The include directive is used to substitute text or
code in the current page. So the JSP engine should
expand the current page with new code or text.
The taglib directive identifies a tag library which
is used by the custom tag. So the JSP engine can
locate the tag library by this information.

2.2 Scripting Element Tags

Scripting element tags are tags inside which
general purpose languages can be coded. There are
3 kinds of tags in these tags, such as a declaration
tag, a scriptlet tag and a expression scripting tag.

2.3 Action Tags

There are two kinds of action tags. One is
standard a action tag and the other is a custom
tag. Standard action tags are tags that may affect
the current output stream and use or modify or
create objects. Custom tags are tags that are im-
plemented and acted by a web application de-
veloper. The sorts of standard action tags are
forward action tag, include action tag, param action

tag and bean class action tag.

3. THE CONSTRUCTION OF THE IN-
TERPRETER AND THE PROCESSING
OF THE SCOPES

3.1 The Construction of the Interpreter

The interpreter was implemented in Java. It has

four classes overally, JSP Interpreter, Preprocessor,
LexicalAnalyser and PrintServlet.(Fig. 1) JSPInter-
preter is the main class calling Preprocessor and
PrintServiet. Preprocessor class processes all the
directive tags gathering some information for
request scope table, RequestTable, which is de-
livered to JSPInterpreter. PrintServlet is a class
that prints servlets using RequestTable and
LexicalAnalyser.

The directives were processed by Preprocessor
in this paper. The attributes of page directive were
implemented as follows.(All the values of these
attributes were passed to PrintServlet.) The lan-
guage attribute is meaningless because JSP cur-
rently supports only Java. The values of import
and extends attributes were saved to be printed at
PrintServlet. Since getPageContext() of JspFactory
determines the buffer size and whether the output
stream will be flushed automatically or not, the
buffer and autoflush attributes were also saved.
The value of the contentType attribute were saved
also to be used by setContentType() of response
implicit object. The value of the session attribute,
that is true or false, can be processed when the
session implicit object is created. So it was also
saved. And since errorPage and isErrorPage are
related to exception object the values of them were
saved also too, which were used when the ex-
ception implicit object was created. When the value
of isThreadSafe is true, nothing was done. But
when it is false which means all threads should

be run separately, all the code inside service() were

D page

V@

PrintServlet

LexicalAnalyser

Fig. 1. The structure of the interpreter

854 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 8, JUNE 2004

declared as synchronized.

The scripting tags were processed in Print-
Servlet. Since the code inside the declaration
scripting tags can be used in the current JSP page
it was printed as a field level in the servlet. And
since the expression scripting tag is a value in the
HTML file the code inside this tag was converted
to a string using toString() at the position where
this tag appeared in the current JSP page. The code
inside scriptlet tag was printed in service() method
of the servlet because they are code for each
client.(As for action tags they will be explained in
the following sessions.)

3.2 The processing of page scope

An identifier with page scope can be used in the
same JSP page and the service() method is the
actual only method among init(), service() and
destroy() to be called by the JSP engine. So iden-
tifiers with page were interpreted within service().
But declarations within the declaration tags were
interpreted into class member declaration parts of
servlet since they can be used in other methods.
So some kinds of data structure are not needed.
For example the implicit objects with this scope-
out, page, congif etc.— are constructed in service()
method. Bean class with this scope was made to
be declared and the object of it was constructed
within service() method.

3.3 The processing of request scope

There are two action tags that have this scope
in JSP, forward standard action tag and include
standard action tag. An identifier with request
scope can be used in more than two servlets. So
a table is needed to check the scope. URL rewriting
method was used to deliver data. The forward()
or include() method of pageContext implicit object
has URL as their parameters to forward or to
include another JSP page. So instead of passing
only a URL a query string was added to the URL,
for example, “URL?parameterID=value”. And the

forwarded JSP page or the included JSP page gets
the value using getParameter() method of the
request implicit object.

3.4 The processing of session scope

session scope is not a logical range but a
physical time. So if an identifier has this scope it
should be checked before evaluating it whether the
client has visited the site within a given time, for
example 30 minutes. So a table is necessary to
check the time elapsed. But checking a table can
cause a delay. session implicit object exists only
during session time. So session implicit object
itself was used for an identifier with this scope.
For example an identifier or an object has this
scope then the identifier or the name of the object
can be enrolled in session implicit object using
session.setAttribute(). So if the value of the
identifier or the reference of object is needed it can
be accessed by session.getAttribute(). After session
time passed the value can not be accessed because
session object does not exist any more.

3.5 The processing of application scope

Objects or identifiers with this scope are objects
or identifier that can be used in any JSP page of
the application. So application implicit object was
used for this process. That is, setAttribute() and
getAttribute() of application implicit object was
used to deliver data.

4. CONCLUSIONS

This paper has studied new concepts of scopes
which were defined in JSP. Although the concepts
are simple these may be helpful not only to the
development of a server-side scripting language
which sometimes require an object or an identifier
to be used with the same name in the consecutive
pages but also to the implementation of web
applications which need a similar circumstance.

For experiments an interpreter was constructed,

A Scheme to Interpret a JSP Page Using a New Concept of Scopes in Web Environment 855

even though it is not a perfect one. The experiments
were carried out by comparing the results of JSP
pages and those of servlets interpreted by the
interpreter.(At the appendix there are 4 programs.
Two of them are JSP pages using request scope
and two of them are servlets interpreted by the
interpreter. The servlets showed the same results
as the JSP pages. The JSP engine was Tomcat
40.)

5. REFERENCES

[1] Watt, D.A., Programming Language Concepts
and Paradigms, Prentice Hall, 1990.

[2] Lindholm, T. and Yellin, F. The Java Virtual
Machine Specification, 2nd ed. Addison-
Wesley, 1999.

[3] David A Watt and Deryck F Brown, Pro-
gramming Language Processors in JAVA,
Prentice-Hall, 2000.

[4] Hans Bergstein, JavaServer Pages, O Reilly,
2001 Jan.

[5] JavaServer Pages, Specfications 1.2, Sun-
microsystems, 2001 Aug.

[6] Jeisn Hunter etc., Java Servlet Programming,
O’ Reilly, 2001

[7] Gal Shachor etc., JSP Tag Libraries, MMan-
ning, 2001.

[81 Yongju Chung, JSP Explained in Servlet,
Sangneuing, Seoul, 2003, Feb.

[9] JavaServer Pages Spedfications 2.4, draft
final ver., Sun-microsystems, 2003 Mar.

[10] Java Serviet Specification Version 24, Sun—
microsystems, 2003 April.

[11] Junsoo Youn, Implementation and Experiments
of a JSP Interpreter, M.A. Thesis, Dankook
Univ. 2003, Dec.

Yongju Chung

1981 Computer Science, BA,
Seoul National University

1983 Computer Science, MS,
KAIST

1984~ Professor, Dankook Uni-
versity

Research Interests : Programming Language, Parallel
Processing, Internet Traffic, Pat-
tern Recognition & Processing,
Natural Language Processing

Doohyeon Song

1981 Computer Science, BA,
Seoul National University
1983 Computer Science, MS,
KAIST UC Irvine Ph. D.
A. B. D.) IST Researcher
Professor, Dept. of Com-—
puter Science, Yong-in

Songdam University
Research Interests: Machine Learning, CRM, Data
Mining, Security, Bioinformatics,
Image Recognition & Processing

856

JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6. JUNE 2004

Appendix

<%-- RequestTestjsp --%>

<%@ page language="java”
contentType="“text/html;charset=euc-kr” %>

<htm!l>

<head>

<title> Test of request Scope </title>

</head>

<body>

<jsp:forward page=“NewHome.jsp">

<jsp:param name="“count” value="30" />

</jsp:forward>

</body>

</htmi>

Program 1. JSP page, RequestTest.jsp, using a request scope

import javax.servlet.*;
import javax.serviet.http.*;
import javax.servlet.jsp.*;

public class RequestTest extends HttpServlet {
public void service(HttpServletRequest request, HttpServletResponse response)
throws java.io.lOException, ServletException {
JspFactory _jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
JspWriter out = null;
Object page = this;
try {
_jspxFactory = JspFactory.getDefaultFactory();
response.setContent Type(”text/html;charset=euc-kr");
pageContext = _jspxFactory.getPageContext(this, request, response, null, true, 8192, true);
application = pageContext.getServietContext();
config = pageContext.getServletConfig();
session = pageContext.getSession();
out = pageContext.getOut();
Throwable exception = (Throwable) request.getAttribute(“javax.servlet.jsp.jspException”);
out.println(“<%-- RequestTestjsp -—-%>");
out.printin(“*<html>");
out.println(“<head>");
out.println(“<title>");
out.println(“Test of request Scope”);
out.println(“</title>");
out.println(“</head>");
out.printin(“<body>");
pageContext.forward(“NewHome.jsp”+“?count=30");
out.printin(“ </body>");
out.println{*</htmi>");
} catch (Throwable t) {
out.clearBuffer();
} finally {
if (_jspxFactory !'= null) _jspxFactory.releasePageContext(pageContext);
}

Program 2. a servlet RequestTest.java translated from RequestTest.jsp

A Scheme to Interpret a JSP Page Using a New Concept of Scopes in Web Environment

857

<%-- ReadDatajsp --%>

<%@ page language="java”
contentType="text/html;charset=euc-kr” %>

<htmlI>

<head>

<title> Result of request Scope </title>

</head>

<body>

forwarded data = <%= request.getParameter("count”) %>

</body>

</htm]>

Program 3. ReadData.jsp, a JSP page which shows the delivered data from RequestTest.jsp

import javax.serviet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*,

public class ReadData extends HttpServlet {
public void service(HttpServletRequest request, HttpServletResponse response)
throws java.ioJOException, ServletException {
JspFactory _jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServietContext application = null;
ServletConfig config = null;
JspWriter out = null;
Object page = this;
try {
_jspxFactory = JspFactory.getDefaultFactory(),
response.setContentType("text/html;charset=euc-kr");
pageContext = _jspxFactory.getPageContext(this, request, response, null, true, 8192, true);
application = pageContext.getServletContext();
config = pageContext.getServletConfig();
session = pageContext.getSession();
out = pageContext.getOut();
Throwable exception = (Throwable) request.getAttribute(”javax.servlet.jsp.jspException”);
out.println("<%-- ReadData.jsp --%>");
out.println("<html>");
out.printin("<head>");
out.println("<title>");
out.println("Result of request Scope”);
out.println(”</title>");
out.printIn(”"</head>");
out.printin("<body>");
out.println(” forwarded data = ” + request.getParameter("count”).toString());
out.println(”</body>");
out.printIn("</html>");
} catch (Throwable t) {
out.clearBuffer();
} finally {
if (_jspxFactory != null) _jspxFactory.releasePageContext(pageContext);
}

Program 4. ReadData.java translated from ReadData.jsp.

