JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004(pp. 814-823)

A Real Time Multiplayer Network Game System
Based on a History Re-Transmission Algorithm

Seong-hoo Kim*, Kyoo-seok Park’

ABSTRACT

Current video games and game room games are played as a single player mode on the basis of various
emulators. With the evolution of data communications and game technology, a new trend in the game
industry has made the primary interests of game developers and companies in the game industry be moved
toward a multiplayer mode from the traditional single player mode. In this paper, we represent how to
implement a network game platform by allowing network modules to be run in conjunction with the current
video emulator games. It also suggests a synchronization scheme for real-time game playout and practical
mechanism that can support network games to be played with the Peer-to-Peer process using a lobby system.

Keywords: Network Game, Synchronization, Multiplayer, Real-time Game, Multiplatform, Latency, History

Packet, Game Server

1. INTRODUCTION

A lot of people have produced and enjoyed
various types of games, even before computers
were introduced. Since computers have been
common, many games mainly in the form of single
player mode have first drawn public attention in
the market. Thereafter, the technical evolution in
the field of communication and game changes
traditional concepts of games so that many game
developers and companies started to move their
focuses from single player mode to multiplayer one.

In general, single player games can be classified
into PC games and video games, and multiplayer
games in return into on-line games and network
games. The current trend is that network games

% Corresponding Author : Seong-hoo Kim, Address:
(631-701) 449 Wolyong-Dong, Masan, Kyungnam, Korea.
TEL : +82-55-249-2650, FAX : +82-55-249-2650, E-mail
: arrayiv@csc.ac.kr
Receipt date : May 7, 2004, Approval date : June 29, 2004
*PhD course graduate student at Kyungnam Univ.,
Dept. of Computer Engineering.
" Professor, Dept. of Computer Engineering, Kyungnam
Univ. Masan, Korea.
(E-mail : kspark@kyungnam.ac.kr)
% This research has been funded by the Kyungnam
University, Masan, Korea.

have much more interest than ever and other types
of games[1,2]. It can be indirectly verified from real
tendency like that Microsoft at present sells the
network-based X Alive. The Counter Striker is
famous for adapting on-line concepts from a mere
PC game, this kind of games are adapted to on-line
game from only one kind of gamel2].

Current video games as well as those serviced
at commercial game rooms are executed on a PC
with suitable emulators in single player modes.
(Game companies try to provide on-line services for
their existent single player mode games. But, un-
fortunately, current various games are not suc-
cessfully serviced in accordance with their in-
tention. In this paper, we suggest how to graft a
network module into existent emulator games that
can support video games in order to make them
be run as network games, and introduce the con-
cept of a distributed lobby system to reduce loads
to a game server and to allow players to enjoy
games like Peer-to—Peer network games. It also
proposes a synchronization method on how to ex-
ecute games in real-time.

2. RELATED WORK

This section presents various network topologies

A Real Time Multipiayer Network Game System Based on a History Re-Transmission Algorithm 815

for games. Also, categories used to classify games
are briefly surveyed.

2.1 Network Topology for Multiplayer Games

The following Fig. 1 shows the network to-
pologies for multiplayer games. Each of the 4 types
affects game play with its generic character—
istics[3].

Peer to Peer Client/Server(external)

Fig. 1. Topology of Multiplayer network game.

m In the Peer-to-Peer configuration, each player
communicates with other players of the game.
Typically, an external server takes a role in
providing new game contents. Peer—to-Peer games
have the advantages of that there is no need to
maintain a game server, nor to design and code
anything for the server. Each peer can commu-
nicate with each other without any arbitration by
any server. This model can reduce the lack to a
minimum. It is pointed out as the demerit of this
model that the number of players is restricted due
to the available bandwidth([2].

® In the Client/Server(Player) configuration, one
of game player joins in the game as a server. This
player, not a dedicated game server, does not
actively take part in the game. Like the Peer-

to—Peer type, any external server is not required,

but in return bandwidth-related problem is not
considerable for this model because each player
communicates with others who are connected to
the server as role players. In case the server is
disconnected or game is over, a new Sserver is
needed to substitute the old server. When selecting
a new server, it should be considered that the best
candidate is who can minimize the lack and
bandwidth[2,3].

® In the Client/Server(External) configuration,
typically a dedicated server is located in a data
center that is in general directly linked to a high
bandwidth backbone line. Therefore, the server can
provide high bandwidth services, but conversely
the overhead cost of maintenance and dedicated
line for this type is much higher than other
configurations[3].

In the Hybrid configuration, 2 approaches are
possible: load balancing scheme and web server
scheme. In the load balancing, connection to
servers is balanced among multiple servers with
the control of a main server. With this approach,
the main server runs a game, so that some
limitations should be prepared when the number
of game players increases even though connection
is distributed to multiple servers[4].

2.2 Current Method of Playing Games

m Non-network games are based on single
player mode. This method imposes restrictions on
scripting scenarios, but inherently no ones on
network loads. It means that good scenario is the

only requirement for appropriate game services.

a Video games consist of a decoder to fetch
CPU instructions, timing generator to control
timing, display for sound and video, and I/O
interfaces to input data from controllers such as
a joystick. Most video games are played based on
these elements([5].

816 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004

Current on-line video games have been devel-
oping in the form of single player mode, and
requires somewhat a good deal of cost because
they are designed and developed by recomposing
game ROM Images to fit the images into a system
playing the game. They also have the drawbacks
of, such as, when a new game is added, another
single platform should be reconfigured. The sug-
gested method in this paper aliows ROM Images
to be used even without redesigning them, and
presents synchronization mechanism on how to
adjust packet re-transmission following any error
and/or loss by fluctuating network loads. And,
multi-platform based channel server is also in-~
troduced in this paper.

3. SUGGESTED STRUCTURE OF NET-
WORK GAMES

This section constructs a server that can
support both PC game and network game modules
and game clients by games. Current single player
game should have add function to install required
network modules and practical synchronization
mechanism, and secure consistency of game play
after network modules to support real-time net-
work play are added.

Video games mainly include console games and
game room games, and various genres of the games
are serviceable because they are implemented by
game emulators. When considering the above
situation, lobby systems are required for certain
selected games to support various platforms of the
games and allow the games to be played on
network.

In order to support current games to be played
as multi-platform network games, a network
engine and server engine need to be implemented
to have general purposes for network games, by,
for instance, SDK. Also, a proper network game
model that can minimize network delay and best
handle packet loss on network is required.

3.1 Selection of a Current Game for
Playing It on Network

Current PC games are implemented with various
formats and forms so that it is hard to say that
they are played in the same manner. Furthermore,
real synchronization of the game play is almost
impossible if open sources are not available. These
are barriers preventing current PC games from
seamless playing on network.

Regarding video games, the method in which
demands for instructions and data are delivered
from a CRT chip to CPU every 1/60 second is a
clue to reprocess game play when interrupt mech-
anism 1S also applied. Open sources of emulators
supporting video games make network engines to
be installed to a game server. This type of games
directly supports synchronization mechanism so
that real-time game play is possible. An adaptive
synchronization scheme is also available by game
genres to handle variant network delay.

3.2 Game Architecture for Distributed
Network

The game architecture in this paper adopts a
hybrid model with which users can directly
connect with a game server, and supports load
balancing. Once a game starts, clients can with one
another play the game regardless of any load on
the game server because games are played on the
ground of Peer—to-Peer concepts.

The game server consists of a multi-platform
game middleware and game channels. Game clients
include a game host to proceed with a game and
a number of clients.

The suggested game structure is presented in
Fig. 2.

The Middleware arbitrates a game server, and
connects and disconnects a session established
with clients by a TCP connection. It also supports
information exchange between a server and client.
The Game Server is a type of supporting variant

emulator platforms.

A Real Time Multiplayer Network Game System Based on a History Re-Transmission Algorithm 817

Game Server #1
Multiplatform Game Middleware)

’ \
H '
)
! i
1
! |
! 1
1

'
H '
' 1
i 1
i

|
' '
')
! 1
t i
t t
' 1
! [}
\

Game Server #2 Game Server #n

Channel Server Channel Server

ﬁ --------------- Giiert Gonfiguration

Game Host Client #n

A

t

i

]

1

(Client #1) _ .
Network Module Network Module)} !
|

Game Emulator ’

__

Fig. 2. Structure of distributed network game
system.

Each Client can create a game room in the game
server, and at the same time the client who created
the room is designated as a host, which can control

and manage the room.

3.3 Middleware of Network Game Server

The multi-platform game middleware is posi-
tioned between game players and a game server
that arbitrates a game. A game player selects a
game platform, which is the existent single play
mode game supported by the game server, then
goes through a login process. Once a game play
passes the user authorization, he/she can register
his/her own game resources(image list of game
ROM) into the server. The resources are the
images of the game ROM to be shared among
players. An authorized player can check and verify
the load of the game server that is registered into
the multi-platform middleware, then transfer a
game server list to players. Players can connect
with one of the game servers.

The resource manager manages the image list
of the game ROM. When required game ROM by
a certain player is not available, the manager
allows the resources from all of the users, other
than the game server and players who is currently

in playing the game, to be shared with the Peer-
to-Peer process.

ultiplatform Game Middleware

. Load Balance)
[Logln Managerj [Manager
Resource)
[Log] (Manager
/

Fig. 3. Structure of the Multi-platform Game
Middleware.

\.

3.4 Network Game Server

The Network Game Server consists of the Lobby
Manager, DB Server, Game Channel Manager and
Chat Manager. The Fig. 4 shows a network game
flow. The network game server helps a player to
find out counterparts on network, controls chatting
channels, has the invitation function for chatting
and creates and manages game rooms. Any game
player has to join a game room to play and enjoy
a game. And, if the player does not have the images
of game ROM, he or she can download them from
the server or other players with the Peer-to-Peer
mechanism.

After joining in or creating a game room, a
player can exchange messages between or among
players without any intervention by the server.
The role of the Lobby is needed to support finding
out game counterparts and joining in a game room.
When required, a player can meet other players at
the lobby in a designated computer.

® Game Channel Manager

- Has resource control capability through which
any player can download ROM images with
the Peer-to—~Peer process, and wholly man-
ages player's resources.

- Consists of channels according to the images
of game ROM

—- Connects a selected channel to the lobby

manager

818 JOURNAL OF KOREA MULTIMEDIA SOCIETY. VOL. 7, NO. 6, JUNE 2004

Start

Selecting Game
Platform.
User Login

User
Registration

Qutput of Game Seirver Rom Image Indexing for users.
List Extract for Game Server list.

]

Selecting Game Server

Selecting Game
Channel

Exist Rom Image?

Downloading for Rom
Image from Game N
Server/users by p2p

electing Game
Room?

Synchronizing
Game Data

i

Game Data
Send/Receive

Play Game fe—

Remark Lank

Fig. 4. The Flow of Network Game.

m] obby Manager

Controls the game server and monitors the
load of the server

Identifies the IP address and ID of a game
player

- Controls session with clients

-~ A game host first opens one session

The lobby server is that plays a role of lobby.
The lobby server only takes a role of arbitration.

8 Chat Manager
- Controls communication among game players.

With the Peer—-to—Peer architecture, one player
takes the role of a host and all other players play

as clients. A client sends out all of input information
to other clients as well as the server. The result
of a game is evaluated by clients.

Consequently, network and message traffic
increases proportional to the number of clients and
30, clients are restricted to a certain degree. A host
player controls basic management, such that
checks how many players are connected with
network. When a host player leaves a game, one
of other players can take over the role.

3.5 Network Game Clients

The following Fig. 5 shows a architecture of
game client, and it consist of the Frontier, Session
Manager, Network Module and Video Game Engine.

The Network Module processes user input, and
creates and analyzes packets based on threads. It
also keeps a Synchronization Manager, which
stores user input and output into I/O Buffers. The
manager decides packet re-transmission and la-
tency time after measuring packet losses.

The Synchronization Manager calls sequential
information stored in I/O Buffers through invoking
an interrupt using the emulator’s Callback func-
tions in order to synchronize input contents with
the game engine.

The Communication Manager can create or
delete any communication channel between game

s p

Frontier

Session Management)
~

Network Module

(Communication Manager)
1
Packet
Manager

Event
Processor

— G 9N

Syncronization Y—j /O Buffer
Manager {Queue)
! J
13
Video Game Emulator Engine]

Fig. 5. The Architecture of a Game Client.

A Real Time Multiplayer Network Game System Based on a History Re-Transmission Algorithm 819

players supporting the Peer-to-Peer or Peer-to-
Peer(Server) architecture, according to its system
structure.

The Game Session Manager controls information
on game players. When a connection is established
for the first time, it detects a latency time to apply
the time to synchronization for a network game.

4. TRANSMISSION CONTROL ON NET-
WORK

4.1 Network Transmission Model

When real-time games such as action games or
shooting actions are to be played with TCP
connections, blocking due to increased network
load and latency can prevent games from seamless
playing. Under a UDP transmission, packets can
be lost and data distortion may occur. In order to
prevent these problems, this paper suggests a
history transmission mechanism that can support
re-transmission of game data and CRC32 check to
minimize re-transmission of game data due to
packet losses.

The suggested system can send out data directly
to a certain client, not necessarily through the
centralized server. This mechanism is of help to
reduce the loads on the server so that the stability
of the server and fast data transmission can be

secured.

4.2 Synchronization of Network Game

When implementing the synchronization of a
network game, data re-transmission due to packet
loss, network latency and presentation time, etc.
should be considered as follows.

® Latency means the time for a certain computer
to acquire required data packets from another
computer through a computer network, and also
considered as a function of paths occupied by data
packets transferred between computers. When
latency time measured at the network game server

side is greater than half of the packet transmission

time from a client, the time for a message from
clients that arrived last at the game host as replies
to a sync signal from the game host is decided as
a latency time.

® Regarding emulators for video games, inter-
rupt mechanism is used to control timing sequence
adequately. A scan line interrupt to a CRT chip
needed for timing control is a demand for data or
instruction to CPU from a CRT chip every 1/60
second. When this interrupt is properly used to
control timing sequence, network latency can be
handled effectively. When a vertical retrace
interrupt is invoked, a CRT controller is fully
synchronized so that the emulator also has the
same Callback functions as those of a CRT
interrupt. The Callback functions are implemented
with separate subroutines, performs input and
output synchronization and controls a frame rate.
If these scan lines are used to control timing, the
playout by network latency can be adjusted.

®m The contents of a message, which is exploited
for a synchronization process, consist of input and
output data. For any input data from keyboards or
joysticks, 2-byte status information is delivered to
the server. CRC32 checksum is also used to check
packet loss during data transmission.

m [If any packet loss or data distortion occurs,
data re-transmission is inevitably followed to
handle the situation. In the suggested scheme,
current data is transferred with the previous data
to reduce possible chances for re-transmission.
When an event from a keyboard or joystick occurs,
only control data in the form of 2-byte status
information for the current operation as well as
additional 2-byte control data for the previous
operation is transferred.

The whole 4 bytes do not heavily influence
network Jloads. Once any packet loss or error
detected with CRC32 check, the erroneous data is
replaced by the control information. In order to
raise the efficiency of this scheme, adaptive
application to fluctuating packet loss should be

820 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004

surveyed more.

In the history based re-transmission algorithm
(Fig. 6), the number of history stored varies
according to a packet loss rate.

Calcurate Latency
Time

Arrived Packet? e

>

CRC Check,
Packet Sequencing

Caclurate Packet

Packet loss.error?
acket l0ss.el loss rate

Extract History,
Replacement butfer
contents

Require HBRA

Sychronization of
Game Data

Fig. 6. History Based Re-Transmission Algorithm
(HBRA).

4.3 Flow of Network Game Synchronization

The following Fig. 7 shows a conceptual playout
synchronized when a data packet from user input
arrives. (A) represents the synchronized status
when non-history packet transmission is used.
Under this scheme, once input events at Xn and
Yn occur, the emulator’s Callback functions are
invoked for a playout.

The transmission delay is decided taking latency
time at a player into account. The synchronization
delay indicates the delay time required to store data
into a synchronization buffer for a playout. If the
synchronization delay is not applied, flashes or
blinking may be displayed during a playout.

(B) shows a conceptual flow based on a history
re-transmission when packet losses are detected.
If any packet loss is found at Yn, it could be
recovered because a packet having the next

Ipterrup? FrequencY
)
Callback "1_1] B}J
| & l

Player X entity

)

—— he—h
Transmussiu‘gn delay :SYncﬁronizaﬁon delay
N 3!

?
!
’

_-Playout detay

Ym

v

N

*

1

]

)

: 0

Remote Player Y emity?',l'"
- (A) Non history Packet

lp?errupf Frequency

>
| | Iback
Player X entity .) ! ' Time
et - T)
Y SN
| —)
: Transmigsion delay Isyncljronization delay
- N]
b " playout delay '
YN (Packet loss or error) ’Y"” R
Remote Player Y entity g

Yot Yo

R L LRI EE] Artived Packet

(B) History Packet

Fig. 7. Flow of Synchronization.

sequence has 2 histories about already arrived
packets. Under a UDP transmission, fast synchro-
nization is possible using histories even when
packets are not arrived in order.

4.4 Proposed Synchronization Algorithm

The proposed synchronization algorithm is
based on the following design considerations to
support network status: a relationship between
interactive performance and view consistency, an
estimation of network status and overhead, and
visual synchronization.

A view synchronization scheme has the ability
to adjust playout delay time according to network
traffic not lowering interactive performance.

The proposed synchronization scheme is organ-

ized into 2 stages.

m Stage 1: At this stage, the packet transmission
time between each client and a game host is
evaluated to calculate latency time in a way that

A Real Time Multiplayer Network Game System Based on a History Re-Transmission Algorithm 821

the time an echo message acknowledged from a
client keeping a session as a prompt reply to a
message issued from the game host to the client
is measured and divided by 2.

The measured transmission time is managed
during a game session. A standard latency time is
estimated by subtracting transmission time of a
client who is to send out a message from the latest
transmission time, which can be measured once
messages from clients keeping a game session
arrive at the game host. When calculating a latency
time, waiting time in an event queue should also
be included.

Peer-to-Peer network games in general restrict
the number of players to 18, but an emulator game
is suggested in this paper allows up to 8 players
to play with 200ms of the maximum latency time.

® Stage 2: As a game proceeds, each play
measures the status of network traffic at deter-
mined intervals to adjust playout latency time
according to the traffic status. A sender calculates
a packet loss P(1) about packets transmitted to him
for s#h time interval using the equation (1), and
then sends out the result to other players attaching
it to a packet originated from the sender.

P(i) = (Plost([)+Perror(i)) /Ptotal(l) (l)

Puotai(i) is the number of packets received for
i th time interval before actual playout. It is equal
to the sum of packet loss(Pi«), packet error(Peror),
packet delay(Paeay) and packets received (Psuccess).

R{ i) =Pdelay(i)/Ptotal(i) 2)

R(i) is a rate of delayed packets arrived later
than playout time. Each player evaluates averages
of P(i) and R({) by extracting the rate of event
errors of a sender out of the whole events delivered
from other players. When the average of R(i) is
greater than that of P({), each player is notified
of a lengthened playout time because it is regarded
as heavily loaded status.

In the opposite case, a shortened time is delivered

because it is light loaded status. Each player
requests individual sender to re-transmit a playout
time based on a history algorithm when the value
of P(i) of each sender is greater than that of R(i).

4.5 Simulations and Results

The simulation model in this paper assumes
200ms of the maximum delay time and 100ms of
the minimum delay time. The rate of packet error
is set to 7% with the Poisson distribution. And, 10
packets per second are generated. The number of
packets and the rate of delayed packets for the
information sent form senders are evaluated every
2 seconds with the varied loads on network traffic
in order to calculate an average transmission delay
time, which is actually applied to the simulations.
When the rate of packet error P(i) is greater than
R(i), a history based re-transmission algorithm is
applied. In this case, if the rate lies between 5~
20%, 2 histories are transmitted.

Fig. 8 shows that the suggested synchronized
algorithm represents better performance when the
rate of packet errors goes high and, especially in
the wireless network environment.

The simulation system is implemented on a
Linux server in which a game server designed for
this simulation is installed. The game is played in
the Windows environment. Fig. 9 is a screen
showing a connection with a channel server. Fig.
10 shows a lobby system in which a game room can
be created or players are allowed to join in a room.

Rate(%)
20 po

====Propose Scheme —‘

— Static Scheme

AT

0

a 50 100 150 Time(sec) 200 250 300

Fig. 8. Packet of History based Re-transmission
Algorithm.

822 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 7, NO. 6, JUNE 2004

Fig. 9. Channel Server.

Fig. 11. Play of a Network Game.

5. CONCLUSIONS

In this paper, a distributed server model is
designed to make the current single player mode

video games be played as network games with a
lobby system. The suggested system supports and
allows network modules to operate in conjunction
with emulators for the current games so that the
current games can be enjoyed and played by
concurrent multiple players in the form of network
games, and based on multi—platform allows ROM
Images to be used even without redesigning them,
and supports the existing games to be played
without any modification.

The suggested system implements an adaptive
history re-transmission algorithm for the real-time
Peer-to-Peer network games to minimize re-
transmission due to packet errors or losses. In case
of 3D games, once a packet loss or error occurs,
a heavy load on network is inevitably followed by
the re-transmission for the packet having the large
amount of data even though the packet is com-
pressed. But, the system in this paper only transfer
input data from, such as, a keyboard or joystick,
to reduce any load on network, and not to affect
the load although histories are transmitted. When
the adaptive history re-transmission algorithm is
applied to the environment of the unreliable UDP
transmission, the stability can be secured more so
that real-time games are possible by the syn-
chronization acquired by the secured status.

In future, we will study about prediction
algorithm for game classification and development
of SDK which can support network engine to have
general purposes for network games.

6. REFERENCES

[1] On the Geographic Distribution of On-line
Game Servers and Players, NetGames, May,
pp 173-179, 2003.

[2] Provisioning On-line Games: A Traffic Anal-
ysis of a Busy Counter-Strike Server, IMW'02,
Nov, ppl51-156, 2002.

{3] Developing Online Console Games, http://
www.gamasutra.com/features/20030328/isen

A Real Time Multiplayer Network Game System Based on a History Re-Transmission Algorithm 823

see_01.shtml.

[4] An Efficient Synchronization Mechanism for
Mirrored Game Architecture, NetGames, May,
pp 67-73, 2002.

[51 http://www.gbacode.net/

[6] Daniel Bauer and Sean Rooney, Paplo Scotton,
“Network Infrastructure for Massively Distrib-
uted Games”, NetGames 2002, April, 2002.

[7] Tom jehaes and Danny de vleeschauwer,
“Access Network Delay in Network Games”,
NetGames 2003, May, pp63-71, 2003.

[8] Causality and Media Synchronization Control
For Network Multimedia Games, NetGames
2003.

[9] Katherine Guo and Sarit Mukherjee, “A Fair
Message Exchanges Framework for Distrib-
uted Multi-Player Games,” NetGames 2003
May, pp. 29-41, 1998.

[10] L.Gautier and C.Diot, “End-to-end Transmis-
sion Control Machanisms for Multipartyr
Interactive Application on the Internet”, IEEE
INFOCOM’99, March 1999, pp. 1470-1479.

[11] L.Gautier and C.Diot, “A Distributed architec~
ture for multiplayer Interactive Application on
the Internet”, IEEE ICNP'99, July 1999, pp.

6-15.

[12] Matthew K. H. Leung, John C. S. Lui,
“Adaptive Proportional Delay Differentiated
Services: Characterization and Performance
Evaluation”, IEEE/ACM TRANSACTIONS
ON NETWORKING, VOL. 9, NO. 6, DE-
CEMBER 2001, pp. 801-817.

Seong-hoo Kim

IHe is a PhD course graduate
student at Kyungnam University
studying Network Game and
Multimedia system.

Kyoo-seok Park

He is a professor of Computer
engineering at Kyungnam Uni-
versity, Korea. He is the honor-
ary president of Korea Multimedia
society now. His research focuses
on Distributed system, specifically
applied to internet computing,
Security system and Multimedia system. MS and PhD
in Computer science from the Chung-Ang University,
Korea.

